Osteoarthritis (OA) induced microenvironmental alterations are a common and unavoidable phenomenon that greatly exacerbate the pathologic process of OA. Imbalances in the synthesis and degradation of cartilage extracellular matrix (ECM) have been reported to be associated with an adverse microenvironment. Stem cell therapy is a promising treatment for OA, and mesenchymal stem cells (MSCs) are the main cell sources for this therapy.
View Article and Find Full Text PDFPeripheral blood mononuclear cells (PBMC), sourced autologously, offer numerous advantages when procured: easier acquisition process, no in vitro amplification needed, decreased intervention and overall increased acceptability make PBMC an attractive candidate for cell therapy treatment. However, the exact mechanism by which PBMC treat diseases remains poorly understood. Immune imbalance is the pathological basis of many diseases, with macrophages playing a crucial role in this process.
View Article and Find Full Text PDFCartilage defects of the knee joint caused by trauma are a common sports joint injury in the clinic, and these defects result in joint pain, impaired movement, and eventually, knee osteoarthritis (kOA). However, there is little effective treatment for cartilage defects or even kOA. Animal models are important for developing therapeutic drugs, but the existing models for cartilage defects are unsatisfactory.
View Article and Find Full Text PDFNanofat is an effective cell therapy for osteoarthritis (OA). However, it has clinical limitations due to its short half-life. We developed Nanofat lysate (NFL) to overcome the defect of Nanofat and explore its anti-OA efficacy and mechanism.
View Article and Find Full Text PDFKnee Osteoarthritis (kOA), the most common joint degenerative disorder, lacks effective therapeutics. Placenta-derived mesenchymal stromal cells (PMSCs) are effective in tissue repairing and generation, which have potential in treating kOA. This study aimed to determine the anti-kOA efficacy of PMSCs and to explore its action mode.
View Article and Find Full Text PDFSkin aging is a currently irreversible process, affected by increased oxidative stress, activated cellular senescence, and lacked regeneration of the dermal layer. Mesenchymal stem cells (MSCs), such as human umbilical cord-derived MSCs (hucMSCs), have pro-regeneration and anti-aging potencies. To explore whether hucMSCs can be used to treat skin aging, this study employed skin-aging model of nude mice to conduct in vivo assays, including biochemical analysis of superoxide dismutase (SOD) and malondialdehyde (MDA), gross observation, histopathological observation, and immunohistochemical analysis.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most common joint disorder, lacking disease-modifying treatments. Adipose-derived mesenchymal stem cells (ADSCs) are adult multipotent stromal cells obtained from fat tissue, which holds great potential in treating OA. This study aimed to evaluate the anti-OA efficacy of ADSCs from preclinical and clinical facets and explore the underlying mechanism of action.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) is a difficult disease but the clinic lacks effective therapy. As a classic formula of traditional Chinese medicine (TCM), Fuzi decoction (FZD) has been clinically applied for treating OA-related syndromes, but its anti-OA efficacy and mechanism remain unclear.
Purpose: To experimentally and clinically determine the anti-OA efficacy of FZD and clarify the underlying mechanism.
Purpose: To explore the pharmacological mechanisms of Liuwei Dihuang Decoction (LWDHD) against intervertebral disc (IVD) degeneration (IVDD) via network pharmacology analysis combined with experimental validation.
Methods: First, active ingredients and related targets of LWDHD, as well as related genes of IVDD, were collected from public databases. The protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to predict the core targets and pathways of LWDHD against IVDD.
To investigate the correlation between gene mutation and knee osteoarthritis (KOA), a whole-exome sequencing (WES) was applied to analyze blood samples of four KOA patients and two normal subjects in a family. Gene mutations were identified by gene-trapping and high-throughput sequencing analysis across the differences between the patients and normal subjects. The interactive gene network analysis on the retrieval of interacting genes (STRING) database and the KOA-related genes expression data sets was performed.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) and rheumatoid arthritis (RA) were two major joint diseases with similar clinical phenotypes. This study aimed to determine the mechanistic similarities and differences between OA and RA by integrated analysis of multiple gene expression data sets.
Methods: Microarray data sets of OA and RA were obtained from the Gene Expression Omnibus (GEO).
Background: Osteoarthritis (OA) is the most common joint degenerative disorder, with little effective therapy to date. Nanofat is a cocktail of cells obtained from fat tissue, which possesses regenerative capacity and has a potential in treating OA. This study aimed to determine the anti-OA efficacy of Nanofat from basic and clinical aspects and explore its action mode.
View Article and Find Full Text PDFObjective: To compare the clinical and radiographic results of the supercapsular percutaneously assisted total hip (SuperPATH) approach and the conventional approach in hip arthroplasty.
Design: Based on a prepublished protocol (PROSPERO: CRD42020177717), we searched PubMed, Embase, and Cochrane for relevant literatures up to January 30, 2021. The methodological qualities were assessed using the guidelines provided by the Cochrane Collaboration for Systematic Reviews.
Background: The disability rate associated with rheumatoid arthritis (RA) ranks high among inflammatory joint diseases. However, the cause and potential molecular events are as yet not clear. Here, we aimed to identify differentially expressed genes (DEGs), pathways and immune infiltration involved in RA utilizing integrated bioinformatics analysis and investigating potential molecular mechanisms.
View Article and Find Full Text PDF