Publications by authors named "Zuwei Guo"

We have developed a United framework that integrates three self-supervised learning (SSL) ingredients (discriminative, restorative, and adversarial learning), enabling collaborative learning among the three learning ingredients and yielding three transferable components: a discriminative encoder, a restorative decoder, and an adversary encoder. To leverage this collaboration, we redesigned nine prominent self-supervised methods, including Rotation, Jigsaw, Rubik's Cube, Deep Clustering, TransVW, MoCo, BYOL, PCRL, and Swin UNETR, and augmented each with its missing components in a United framework for 3D medical imaging. However, such a United framework increases model complexity, making 3D pretraining difficult.

View Article and Find Full Text PDF

Uniting three self-supervised learning (SSL) ingredients (discriminative, restorative, and adversarial learning) enables collaborative representation learning and yields three transferable components: a discriminative encoder, a restorative decoder, and an adversary encoder. To leverage this advantage, we have redesigned five prominent SSL methods, including Rotation, Jigsaw, Rubik's Cube, Deep Clustering, and TransVW, and formulated each in a framework for 3D medical imaging. However, such a United framework increases model complexity and pretraining difficulty.

View Article and Find Full Text PDF