Publications by authors named "Zusso M"

Article Synopsis
  • Fentanyl triggers neuroinflammation and immune activation through the TLR4/MD-2 complex, leading to side effects like tolerance and increased pain sensitivity.
  • The study assessed fentanyl's effects on proinflammatory responses in rat microglia and human macrophages using techniques like real-time PCR and ELISA, while examining TLR4/MD-2 signaling pathways.
  • Results showed fentanyl increases proinflammatory mediator levels and NF-κB activation linked to TLR4/MD-2, suggesting that targeting this pathway could enhance the safety and effectiveness of opioid pain management.
View Article and Find Full Text PDF

Aim: 2-Pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of N-palmitoylethanolamine, exerts anti-inflammatory activity; however, very little is known about the molecular mechanisms underlying this effect. Here, we tested the anti-neuroinflammatory effect of PEA-OXA in primary microglia and we also investigated the possible interaction of the molecule with the Toll-like receptor 4 (TLR4)-myeloid differentiation protein-2 (MD-2) complex.

Main Methods: The anti-inflammatory effect of PEA-OXA was analyzed by measuring the expression and release of pro-inflammatory mediators in primary microglia by real-time PCR and ELISA, respectively.

View Article and Find Full Text PDF

Simultaneous modulation of multifaceted toxicity arising from neuroinflammation, oxidative stress, and mitochondrial dysfunction represents a valuable therapeutic strategy to tackle Alzheimer's disease. Among the significant hallmarks of the disorder, Aβ protein and its aggregation products are well-recognised triggers of the neurotoxic cascade. In this study, by tailored modification of the curcumin-based lead compound 1, we aimed at developing a small library of hybrid compounds targeting Aβ protein oligomerisation and the consequent neurotoxic events.

View Article and Find Full Text PDF

Microalgae and microalgae-derived compounds have great potential as supplements in the human diet and as a source of bioactive products with health benefits. Spirulina ( (Nordstedt) Gomont, or ) belongs to the class of cyanobacteria and has been studied for its numerous health benefits, which include anti-inflammatory properties, among others. This work was aimed at comparing some spirulina products available on the Italian market.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is not restricted to the neuronal compartment but includes important interactions with immune cells, including microglia. Protein aggregates, common pathological hallmarks of AD, bind to pattern recognition receptors on microglia and trigger an inflammatory response, which contributes to disease progression and severity. In this context, curcumin is emerging as a potential drug candidate able to affect multiple key pathways implicated in AD, including neuroinflammation.

View Article and Find Full Text PDF

The blue-green alga is rich in phycocyanins, that exhibit a wide range of pharmacological actions. C-phycocyanin (C-PC), in particular, possesses hepatoprotective, nephroprotective, antioxidant, and anticancer effects. Furthermore, several studies have reported both anti- and proinflammatory properties of this pigment.

View Article and Find Full Text PDF

Uncontrolled neuroinflammation and microglia activation lead to cellular and tissue damage contributing to neurodegenerative and neurological disorders. Spirulina ( (Nordstedt) Gomont, or ), a blue-green microalga, which belongs to the class of cyanobacteria, has been studied for its numerous health benefits, which include anti-inflammatory properties, among others. Furthermore, studies have highlighted neuroprotective effects of Spirulina from neuroinflammatory insults in different brain areas.

View Article and Find Full Text PDF

Remyelination in patients with multiple sclerosis frequently fails, especially in the chronic phase of the disease promoting axonal and neuronal degeneration and progressive disease disability. Drug-based therapies able to promote endogenous remyelination capability of oligodendrocytes are thus emerging as primary approaches to multiple sclerosis. We have recently reported that the co-ultramicronized composite of palmitoylethanolamide and the flavonoid luteolin (PEALut) promotes oligodendrocyte precursor cell (OPC) maturation without affecting proliferation.

View Article and Find Full Text PDF

Activation of microglia results in the increased production and release of a series of inflammatory and neurotoxic mediators, which play essential roles in structural and functional neuronal damage and in the development and progression of a number of neurodegenerative diseases. The microalga Euglena gracilis (Euglena), rich in vitamins, minerals, and other nutrients, has gained increasing attention due to its antimicrobial, anti-viral, antitumor, and anti-inflammatory activities. In particular, anti-inflammatory properties of Euglena could exert neuroprotective functions in different neurodegenerative diseases related to inflammation.

View Article and Find Full Text PDF

The holistic approach of personalized medicine, merging clinical and molecular characteristics to tailor the diagnostic and therapeutic path to each individual, is steadily spreading in clinical practice. Psychiatric disorders represent one of the most difficult diagnostic challenges, given their frequent mixed nature and intrinsic variability, as in bipolar disorders and depression. Patients misdiagnosed as depressed are often initially prescribed serotonergic antidepressants, a treatment that can exacerbate a previously unrecognized bipolar condition.

View Article and Find Full Text PDF

Background: Neuroinflammation is the response of the central nervous system to events that interfere with tissue homeostasis and represents a common denominator in virtually all neurological diseases. Activation of microglia, the principal immune effector cells of the brain, contributes to neuronal injury by release of neurotoxic products. Toll-like receptor 4 (TLR4), expressed on the surface of microglia, plays an important role in mediating lipopolysaccharide (LPS)-induced microglia activation and inflammatory responses.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease.

View Article and Find Full Text PDF

Background: Persistent and/or recurrent inflammatory processes are the main factor leading to multiple sclerosis (MS) lesions. The composite ultramicronized palmitoylethanolamide, an endogenous N-acylethanolamine, combined with the flavonoid luteolin, PEALut, have been found to exert neuroprotective activities in experimental models of spinal and brain injury and Alzheimer disease, as well as a clinical improvement in human stroke patients. Furthermore, PEALut enhances the expression of different myelin proteins in oligodendrocyte progenitor cells suggesting that this composite might have protective effects in MS experimental models.

View Article and Find Full Text PDF

Alzheimer's disease is likely to be caused by copathogenic factors including aggregation of Aβ peptides into oligomers and fibrils, neuroinflammation, and oxidative stress. To date, no effective treatments are available, and because of the multifactorial nature of the disease, it emerges the need to act on different and simultaneous fronts. Despite the multiple biological activities ascribed to curcumin as neuroprotector, its poor bioavailability and toxicity limit the success in clinical outcomes.

View Article and Find Full Text PDF

Epigenetics is the study of changes in gene expression which may be triggered by both genetic and environmental factors, and independent from changes to the underlying DNA sequence-a change in phenotype without a change in genotype-which in turn affects how cells read genes. Epigenetic changes represent a regular and natural occurrence but can be influenced also by factors such as age, environment, and disease state. Epigenetic modifications can manifest themselves not only as the manner in which cells terminally differentiate, but can have also deleterious effects, resulting in diseases such as cancer.

View Article and Find Full Text PDF

Background: Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1β (IL-1β), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1β release is promoted by ATP acting at the purinergic P2X receptor (P2XR) in cells primed with toll-like receptor (TLR) ligands.

View Article and Find Full Text PDF

Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system ("neuroinflammation"), especially when prolonged, can be particularly injurious.

View Article and Find Full Text PDF
Article Synopsis
  • Several studies indicate that curcumin and its analogues have antioxidant and anti-inflammatory effects, particularly in macrophage cell models.
  • In this research, the effects of curcumin and two analogues, GG6 and GG9, were tested on human blood-derived macrophages after activation with LPS or Toll-like receptor agonists.
  • The findings reveal that curcumin did not suppress LPS-induced inflammation, while GG9 was effective in mitigating inflammatory responses and may be a promising candidate for future macrophage-targeting drugs.
View Article and Find Full Text PDF

Systemic lipopolysaccharide (LPS) induces an acute inflammatory response in the central nervous system (CNS) ("neuroinflammation") characterized by altered functions of microglial cells, the major resident immune cells of the CNS, and an increased inflammatory profile that can result in long-term neuronal cell damage and severe behavioral and cognitive consequences. Curcumin, a natural compound, exerts CNS anti-inflammatory and neuroprotective functions mainly after chronic treatment. However, its effect after acute treatment has not been well investigated.

View Article and Find Full Text PDF

The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics.

View Article and Find Full Text PDF

Increasing evidence suggests that neurodegeneration occurs in part because the environment is affected during disease in a cascade of processes collectively termed neuroinflammation. This is a reactive response of the central nervous system against noxious elements that interfere with tissue homeostasis. Neuroinflammation is mediated by inflammatory molecules released by microglial cells.

View Article and Find Full Text PDF

Dopaminergic neuronal cell degeneration is the principal characteristic feature of the neuropathology of Parkinson disease. Cultures of mesencephalic neurons are widely used as a source of dopaminergic neurons for the study of mechanisms implicated in dopaminergic cell death and for the evaluation of potential dopaminergic neuroprotective agents, including neurotrophic factors. This chapter presents a detailed protocol for the preparation of rat mesencephalic cell cultures and their application to evaluating the effect of the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium and the neuroprotective action of brain-derived neurotrophic factor.

View Article and Find Full Text PDF