IEEE Trans Neural Netw Learn Syst
August 2024
Graph regularized nonnegative matrix factorization (GNMF) has been widely used in data representation due to its excellent dimensionality reduction. When it comes to clustering polluted data, GNMF inevitably learns inaccurate representations, leading to models that are unusually sensitive to outliers in the data. For example, in a face dataset, obscured by items such as a mask or glasses, there is a high probability that the graph regularization term incorrectly describes the association relationship for that sample, resulting in an incorrect elicitation in the matrix factorization process.
View Article and Find Full Text PDFPrevious studies have mostly focused on using visible-to-near-infrared spectral technique to quantitatively estimate soil cadmium (Cd) content, whereas little attention has been paid to identifying soil Cd contamination from a perspective of spectral classification. Here, we developed a framework to compare the potential of two spectral transformations (i.e.
View Article and Find Full Text PDF