Supramolecular prodrug vesicles with efficient property for dual chemotherapy have been successfully constructed based on the orthogonal self-assembly between a water-soluble pillar[5]arene host () and a betulinic acid guest () as well as doxorubicin (DOX). Under the acidic microenvironment of cancer cells, both the encapsulated anticancer drug DOX and prodrug can be effectively released from DOX-loaded ⊃ prodrug vesicles for combinational chemotherapy. Furthermore, bioexperiments indicate that DOX-loaded prodrug vesicles can obviously enhance the anticancer efficiency based on the cooperative effect of DOX and , while remarkably reducing the systematic toxicity in tumor-mice, displaying great potential applications in combinational chemotherapy for cancer treatments.
View Article and Find Full Text PDFIn this study, a new method/mechanism to manipulate ions in solution was developed, based on which liquid-phase ion trap was built. In this liquid-phase ion trap, ion manipulations conventionally performed in a quadrupole ion trap or in a trapped ion mobility spectrometer placed in a vacuum were achieved in solutions. Through theoretical derivation and numerical simulation, it is found that ions have different motional characteristics than those in vacuum.
View Article and Find Full Text PDFAn artificial light-harvesting system with sequential energy-transfer process was fabricated based on a supramolecular strategy. Self-assembled from the host-guest complex formed by water-soluble pillar[5]arene (WP5), a bola-type tetraphenylethylene-functionalized dialkyl ammonium derivative (TPEDA), and two fluorescent dyes, Eosin Y (ESY) and Nile Red (NiR), the supramolecular vesicles achieve efficient energy transfer from the AIE guest TPEDA to ESY. ESY can function as a relay to further transfer the energy to the second acceptor NiR and realize a two-step sequential energy-transfer process with good efficiency.
View Article and Find Full Text PDFBesides portability and increasingly improved performances, the ability of screening target analyte from complex compounds is a crucial function of miniature mass spectrometers, especially for in situ analysis. Selected reaction monitoring (SRM) and multiple reaction monitoring (MRM) operation modes are the most widely used mass spectrometry operation methods for target analyte quantitation. As a continuous effort to improve the analytical performances of the "brick" mass spectrometer, built in-house, pseudo-SRM and pseudo-MRM modes were realized on the linear ion trap mass analyzer in the device.
View Article and Find Full Text PDFBifunctional supramolecular prodrug vesicles have been successfully constructed based on the complexation between a glutathione (GSH)-responsive prodrug guest molecule (DNS-CPT) and a water-soluble pillar[5]arene (WP5) for cancer diagnosis and therapy. Under the microenvironment of cancer cells with high GSH concentration, 7-ethyl-10-hydroxycamptothecin (SN-38) with strong yellow fluorescence can be efficiently released from the prodrug DNS-CPT for drug location and cancer therapy.
View Article and Find Full Text PDFA better understanding of nanoelectrospray ionization (nano-ESI) would be beneficial in further improving the performances of nano-ESI. In this work, the pulsed high-voltage (HV) nano-ESI has been electrically modeled and then systematically characterized by both voltage-current and mass spectrometry measurements. First, the equivalent resistance of a nano-ESI source changes with respect to both emitter tip diameter and the HV applied.
View Article and Find Full Text PDFA closed-loop "smart" insulin delivery system with the capability to mimic pancreatic cells will be highly desirable for diabetes treatment. This study reports a multiple stimuli-responsive insulin delivery platform based on an explicit supramolecular strategy. Self-assembled from a well-designed amphiphilic host-guest complex formed by pillar[5]arene and a diphenylboronic acid derivative and loaded with insulin and glucose oxidase, the obtained insulin-GOx-loaded supramolecular vesicles can selectively recognize glucose, accompanied by the structure disruption and efficient release of the entrapped insulin triggered by the high glucose concentration as well as the in situ generated H O and acid microenvironment during the GOx-promoted specific oxidation of glucose into gluconic acid.
View Article and Find Full Text PDFFunctional materials play a vital role in the fabrication of smart windows, which can provide a more comfortable indoor environment for humans to enjoy a better lifestyle. Traditional materials for smart windows tend to possess only a single functionality with the purpose of regulating the input of solar energy. However, different color tones also have great influences on human emotions.
View Article and Find Full Text PDF