In order to realize high-precision diagnosis of bearings faults in a multi-sensor detection environment, a fault diagnosis method based on two-stage signal fusion and deep multi-scale multi-sensor networks is proposed. Firstly, the signals are decomposed and fused using weighted empirical wavelet transform to enhance weak features and reduce noise. Secondly, an improved random weighting algorithm is proposed to perform a second weighted fusion of the signals to reduce the total mean square error.
View Article and Find Full Text PDFTo improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault classification features for bearings. Accordingly, a bearing fault classification feature extraction method based on multisensor fusion technology and an enhanced binary one-dimensional ternary pattern (EB-1D-TP) algorithm were proposed in this study. First, an optimal equalization weighting algorithm was established to realize high-precision fusion of bearing signals by introducing an optimal equalization factor and determining the theoretical optimal equalization factor value.
View Article and Find Full Text PDFIn the process of block compressed sensing (CS) applied to the rolling bearing fault signal, the reconstruction accuracy of the signal is low due to the large difference in sparsity between blocks and the unreasonable components of reconstruction support set, which affects the overall reconstruction effect of the signal. To improve the signal reconstruction results, forward and backward stagewise orthogonal matching pursuit (FBStOMP) based on the adaptive block method is proposed. First, to equalize the sparsity of each block signal, the fault signal is divided into blocks according to the adaptive block length, which is obtained by the short-time autocorrelation algorithm.
View Article and Find Full Text PDF