Unveiling the mechanism behind chirality propagation and dissymmetry amplification at the molecular level is of significance for the development of chiral systems with comprehensively outstanding chiroptical performances. Herein, we have presented a straightforward Cu-mediated Ullmann homocoupling approach to synthesize perylene diimide-entwined double π-helical nanoribbons encompassing dimer, trimer, and tetramer while producing homochiral or heterochiral linking of chiral centers. A significant dissymmetry amplification was achieved, with absorption dissymmetry factors (||) increasing from 0.
View Article and Find Full Text PDFThe creation and development of carbon nanomaterials promoted material science significantly. Bottom-up synthesis has emerged as an efficient strategy to synthesize atomically precise carbon nanomaterials, namely, molecular carbons, with various sizes and topologies. Different from the properties of the feasibly obtained mixture of carbon nanomaterials, numerous properties of single-component molecular carbons have been discovered owing to their well-defined structures as well as potential applications in various fields.
View Article and Find Full Text PDFTargeting energy metabolism holds the potential to effectively treat a variety of malignant diseases, and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) is a key regulator of energy metabolism. However, PGC1α's role in cancer, especially in hepatocellular carcinoma (HCC) remains largely unknown. In the present study, we reported that PGC1α was significantly downregulated in HCC cell lines and specimens.
View Article and Find Full Text PDF