Publications by authors named "Zuoxu Xiao"

In order to promote the wide application of clean energy-fuel cells, it is urgent to develop transition metal-based high-efficiency oxygen reduction reaction (ORR) catalytic materials with a low cost and available rich raw material resources to replace the currently used precious metal platinum-based catalytic materials. Herein, a novel 'active-site-anchoring' strategy was developed to synthesize highly-activated carbon-based ORR catalysts. Firstly, poly(-phenylene benzobisoxazole) (PBO) fiber with a stable chemical structure was selected as the main precursor, and iron was complexed on its surface, and then poly-dopamine (PDA) was coated on the surface of PBO-Fe to form a PBO-Fe-PDA composite structure.

View Article and Find Full Text PDF

The construction of low-Pt-content intermetallic on carbon supports has been verified as a promising method to promote the activity of the oxygen reduction reaction (ORR). In this study, we have developed a simple and effective strategy to obtain a well-designed CNT-PtFe-PPy precursor. This precursor contains modulated Pt- and Fe-based content dispersed in polypyrrole (PPy) chain segments, which are in-situ generated on the templates of carbon nanotubes (CNTs).

View Article and Find Full Text PDF

An outstanding oxygen reduction reaction (ORR) electrocatalyst is firstly developed deriving from sustainable rice husk (RH) biomass. Benefiting from self-doped Si in RH, the higher proportion of pyridine N, graphite N and expecially Fe-N as well as thiophene S contents were produced in Si-Fe/S/N-RH in comparison with those of Si-free Fe/S/N-RH Consequently, the half-wave potential of 0.89 V and the onset potential of 0.

View Article and Find Full Text PDF

It is very important, but also challenging to produce high-activity, high durability and affordable non-noble-metal-bifunctional-electrocatalysts for sustainable energy application. Here, one-pot synthesized iron covalent porphyrin polymers (FePor-CPP), with carefully placed Fe, N atoms, a regular porous structure, Co[Co(CN)] and NaHPO precursors were carbonized into N,P-doped carbon nanospheres with the active species of both bimetallic CoFe phosphides and CoC nanoparticles (denoted as CoC/(CoFe)P@C). By employing the CoC/(CoFe)P@C as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrode catalysts, superior catalytic activity is achieved with E of 0.

View Article and Find Full Text PDF

Catalysts used for the oxygen reduction reaction (ORR) are crucial to fuel cells. However, the development of novel catalysts possessing high activity at a low cost is very challenging. Recently, extensive research has indicated that nitrogen-doped carbon materials, which include nonprecious metals as well as metal-based oxides, can be used as excellent candidates for the ORR.

View Article and Find Full Text PDF

Iron, N-codoped carbon materials (Fe-N-C) are promising electrocatalysts toward oxygen reduction reactions due to their high atom utilization efficiency and intrinsic activity. Nanostructuring of the Fe-N-C materials, such as introducing porosity into the carbon structure, would be conducive to further increasing the exposure of active sites as well as improving the mass transfer. Herein, we explore the potential of iron complex-functionalized micelles of mesoporous SiO as a platform for constructing porous Fe-N-C materials.

View Article and Find Full Text PDF

Activatable triplet photosensitization refers to a photosentization process which can be turned on/off easily by external stimulus. Activatable triplet photosensitizations are normally achieved by interfering with the singlet excited state before the intersystem cross process (ISC), i.e.

View Article and Find Full Text PDF

Stable dispersions of paraffin wax droplets and their nano- and microspheres have broad applications. Despite intensive efforts, the production of uniform wax spheres remains a challenge. For their preparation, abundant surfactants and other additives are commonly used to stabilize the dispersions.

View Article and Find Full Text PDF