Publications by authors named "Zuoming Jin"

Tin-based perovskite solar cells have garnered attention for their biocompatibility, narrow bandgap, and long thermal carrier lifetime. However, nip-type tin-based perovskite solar cells have underperformed largely due to the indiscriminate use of metal oxide electron transport layers originally designed for nip-type lead-based perovskite solar cells. Here, we reveal that this underperformance is caused by oxygen vacancies and deeper energy levels in metal oxide.

View Article and Find Full Text PDF

The commercialization process of perovskite solar cells (PSCs) is markedly restricted by the power conversion efficiency (PCE) and long-term stability. During fabrication and operation, the bottom interface of the organic-inorganic hybrid perovskite layer frequently exhibits voids and residual PbI, while these defects inevitably act as recombination centers and degradation sites, affecting the efficiency and stability of the devices. Therefore, the degradation and nonradiative recombination originating from the buried interface should be thoroughly resolved.

View Article and Find Full Text PDF

Organic-inorganic perovskites face the issues of being vulnerable to oxygen and moisture and the trap sites located at the surface and grain boundaries. Integration of two-dimensional (2D) perovskites as a capping layer is an effective route to enhance both photovoltaic efficiency and environmental stability of the three-dimensional (3D) underlayer. Here, we employ 1,4-butanediammonium diiodide (BDADI), which has a short chain length and diammonium cations, to construct a 3D/2D stacking perovskite solar cells (PSCs).

View Article and Find Full Text PDF