Publications by authors named "Zuojia Wang"

The flexible and conformal interconnects for electronic systems as a potential signal transmission device have great prospects in body-worn or wearable applications. High-efficiency wave propagation and conformal structure deformation around human body at radio communication are still confronted with huge challenges due to the lack of methods to control the wave propagation and achieve the deformable structure simultaneously. Here, inspired by the kirigami technology, a new paradigm to construct spoof plasmonic interconnects (SPIs) that support radiofrequency (RF) surface plasmonic transmission is proposed, together with high elasticity, strong robustness, and multifunction performance.

View Article and Find Full Text PDF

Photonic topological states, providing light-manipulation approaches in robust manners, have attracted intense attention. Connecting photonic topological states with far-field degrees of freedom (d.o.

View Article and Find Full Text PDF

The excitation of a nonradiating anapole in a high-index dielectric nanosphere is an effective pathway for enhancing light absorption. Here, we investigate the effect of localized lossy defects on the nanoparticle based on Mie scattering and multipole expansion theories and find its low sensitivity to absorption loss. The scattering intensity can be switched by tailoring the defect distribution of the nanosphere.

View Article and Find Full Text PDF

Hyperbolic polaritons in extremely anisotropic materials have attracted intensive attention due to their exotic optical features. Recent advances in optical materials reveal unprecedented dispersion engineering of polaritons, resulting in twistronics for photons, canalized phonon polaritons, shear polaritons, and tunable topological polaritons. However, the on-demand reconfigurability of polaritons, especially with magnetic anisotropic dispersions, is restricted by weak natural magnetic anisotropy and hence remains largely unexplored.

View Article and Find Full Text PDF

Spoof surface plasmon polaritons (SSPPs) have aroused widespread concern due to their strong ability in field confinement at low frequencies. For miniaturized integrated circuits, there is a pressing need for nonreciprocal spoof plasmonic platforms that provide diode functionalities. In this letter, we report the realization of nonreciprocal phase shifting in SSPPs using the transverse Faraday effect.

View Article and Find Full Text PDF

The metasurface has recently emerged as a powerful platform to engineer wave packets of free electron radiation at the mesoscale. Here, we propose that Airy beams can be generated when moving electrons interact with bianisotropic metasurfaces. By changing the intrinsic coupling strength, full amplitude coverage and 0-to-π phase switching of Smith-Purcell radiation can be realized from the meta-atoms.

View Article and Find Full Text PDF

In this paper, we provide an experimental proof-of-concept of this dynamic three-dimensional (3D) current manipulation through a 3D-printed reconfigurable meta-radiator with periodically slotted current elements. By utilizing the working frequency and the mechanical configuration comprehensively, the radiation pattern can be switched among 12 states. Inspired by maximum likelihood method in digital communications, a robustness-analysis method is proposed to evaluate the potential error ratio between ideal cases and practice.

View Article and Find Full Text PDF

Strong magneto-optical effect with low external magnetic field is of great importance to achieve high-performance isolators in modern optics. Here, we experimentally demonstrate a significant enhancement of the magneto-optical effect and nonreciprocal chiral transmission in low-biased gyrotropic media. A designer magneto-optical metasurface consists of a gyrotropy-near-zero slab doped with magnetic resonant inclusions.

View Article and Find Full Text PDF

Chiral metamirror is one of the recently developed metadevices which can reflect designated circularly polarized waves, mimicking the exoskeleton of iridescent green beetles. Here, an optically transparent metamirror that can absorb microwave chiral photons in a broadband spectrum is demonstrated. A coupled mode theory is adopted to reveal the underlying physics for the improved bandwidth performance.

View Article and Find Full Text PDF

Metamaterials/metasurfaces, which have subwavelength resonating unit cells (i.e., meta-atoms), can enable unprecedented control over the flow of light.

View Article and Find Full Text PDF

Moving electrons interacting with media can give rise to electromagnetic radiations and has been emerged as a promising platform for particle detection, spectroscopies, and free-electron lasers. In this letter, we investigate the Smith-Purcell radiation from helical metagratings, chiral structures similar to deoxyribonucleic acid (DNA), in order to understand the interplay between electrons, photons, and object chirality. Spiral field patterns can be generated while introducing a gradient azimuthal phase distribution to the induced electric dipole array at the cylindrical interface.

View Article and Find Full Text PDF

A rigorous homogenization theory is developed to characterize the effective conductivity tensor of periodic graphene ribbons. This way, the obtained conductivity simplifies the study of the exotic scattering properties of periodic graphene ribbons. As a typical example, we find that the performance of reflective dichroism from the designed graphene ribbons can be enhanced (up to a maximum linear dichroism of 0.

View Article and Find Full Text PDF

Enhancing nonreciprocal light-matter interaction at subwavelength scales has attracted enormous attention due to high demand for compact optical isolators. Here, we propose a significant enhancement of the magneto-optical effect in low-biased gyromagnetic media via photonic doping. Magnetic particles immersed in a gyrotropy-near-zero medium act as dopants that largely modify the macroscopic gyromagnetic effects as well as the gyroelectric ones.

View Article and Find Full Text PDF

Hyperbolic polaritons in van der Waals materials and metamaterial heterostructures provide unprecedented control over light-matter interaction at extreme nanoscales. Here we propose a concept of type-I hyperbolic metasurface supporting highly-squeezed magnetic designer polaritons, which act as magnetic analogs of hyperbolic polaritons in the hexagonal boron nitride (h-BN) in the first Reststrahlen band. Compared with the natural h-BN, the size and spacing of the metasurface unit cell can be readily engineered, allowing for manipulating designer polaritons in frequency and space with greater flexibility.

View Article and Find Full Text PDF

Hiding an arbitrary object with a cloak at a distance from an object is of great significance in scientific research, but remains unrealized as a practical device. In this paper, we propose the first experimental realization of a remote cloaking device that makes any object located at a certain distance invisible at direct current (DC) frequency. A negative resistor network with active elements is used to achieve the remote function of the DC cloak.

View Article and Find Full Text PDF

A fundamental cornerstone in nanophotonics is the ability to achieve hyperbolic dispersion of surface plasmons, which shows excellent potentials in many unique applications, such as near-field heat transport, planar hyperlens, strongly enhanced spontaneous emission, and so forth. The hyperbolic metasurfaces with such an ability, however, are currently restricted to electric hyperbolic metasurface paradigm, and realization of magnetic hyperbolic metasurfaces remains elusive despite the importance of manipulating magnetic surface plasmons (MSPs) at subwavelength scale. Here, magnetic hyperbolic metasurfaces are proposed and designed, on which diffraction-free propagation, anomalous diffraction, negative refraction, and frequency-dependent strong spatial distributions of the MSPs in the hyperbolic regime are experimentally observed at microwave frequencies.

View Article and Find Full Text PDF

Recent progress on anisotropic 2D materials brings new technologies for directional guidance of hyperbolic plasmons. Here, we investigate the plasmonic modes in twisted bilayer 2D materials (e.g.

View Article and Find Full Text PDF

The concept of an invisibility cloak is a fixture of science fiction, fantasy, and the collective imagination. However, a real device that can hide an object from sight in visible light from absolutely any viewpoint would be extremely challenging to build. The main obstacle to creating such a cloak is the coupling of the electromagnetic components of light, which would necessitate the use of complex materials with specific permittivity and permeability tensors.

View Article and Find Full Text PDF

Localized spoof surface plasmons (LSSPs) have recently emerged as a new research frontier due to their unique properties and increasing applications. Despite the importance, most of the current researches only focus on electric/magnetic LSSPs. Very recent research has revealed that toroidal LSSPs, LSSPs modes with multipole toroidal moments, can be achieved at a point defect in a 2D groove metal array.

View Article and Find Full Text PDF

Origami is the art of folding two-dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three-dimensional (3D) objects. This study reports origami-based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura-ori split-ring resonators. The deformation of the Miura-ori unit along the third dimension induces net electric and magnetic dipoles of split-ring resonators parallel or anti-parallel to each other, leading to the strong chiral responses.

View Article and Find Full Text PDF

Guiding surface states through disorders recently has attracted attention of scientists from diverse backgrounds. In this work, we report a robust method to guide surface plasmon polaritons (SPPs) through arbitrary distorted metal surfaces (a kind of disorder), including slopes, bumps, and sharp corners. Almost total transmissions over a broad frequency range can be achieved by use of infinitely anisotropic metamaterials (IAMs).

View Article and Find Full Text PDF

Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C-aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C-aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface.

View Article and Find Full Text PDF

Optical chiral metamaterials have recently attracted considerable attention because they offer new and exciting opportunities for fundamental research and practical applications. Through pragmatic designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Meanwhile, the local chiral fields can be enhanced by plasmonic resonances to drive a wide range of physical and chemical processes in both linear and nonlinear regimes.

View Article and Find Full Text PDF

Free-space carpet cloak designed with transformation optics requires materials exhibiting simultaneously anisotropic properties and plasma-like behaviors, but materials that simultaneously meet these requirements are rarely found in nature. The recently discovered graphene has shown unique anisotropic plasma-like behavior benefitting from its natural two-dimensional structure and in-plane ultrahigh electron mobility, and therefore, can be a good candidate for the free-space carpet cloak design. In this Letter, we theoretically propose a novel free-space carpet cloak by using periodically stacking layered graphene for the first time.

View Article and Find Full Text PDF

We propose the concept of a meta-substrate to broaden the bandwidth of left-handed metamaterials. The meta-substrate, which behaves like an inhomogeneous magnetic substrate, is composed of another kind of magnetic metamaterials like metallic closed rings. When conventional metamaterial rings are printed on this kind of meta-substrate in a proper way, the interaction of the metamaterials units can be greatly enhanced, yielding an increased bandwidth of negative permeability.

View Article and Find Full Text PDF