The identification of peptides is a cornerstone of mass spectrometry-based proteomics. Spectral library-based algorithms are well-established methods to enhance the identification efficiency of peptides during database searches in proteomics. However, these algorithms are not specifically tailored for tandem mass tag (TMT)-based proteomics due to the lack of high-quality TMT spectral libraries.
View Article and Find Full Text PDFHistone post-translational modifications (PTMs) regulate gene expression patterns through epigenetic mechanisms. The 5 histone proteins (H1, H2A, H2B, H3, and H4) are extensively modified, with over 75 distinct modification types spanning more than 200 sites. Despite strong advances in mass spectrometry-based approaches, identification and quantification of modified histone peptides remains challenging due to factors such as isobaric peptides, pseudo-isobaric PTMs, and low stoichiometry of certain marks.
View Article and Find Full Text PDFAdvances in high-throughput omics technologies have enabled system-wide characterization of biological samples across multiple molecular levels, such as the genome, transcriptome, and proteome. However, as sample sizes rapidly increase in large-scale multi-omics studies, sample mix-ups have become a prevalent issue, compromising data integrity and leading to erroneous conclusions. The interconnected nature of multi-omics data presents an opportunity to identify and correct these errors.
View Article and Find Full Text PDF53BP1 is a well-established DNA damage repair factor that has recently emerged to critically regulate gene expression for tumor suppression and neural development. However, its precise function and regulatory mechanisms remain unclear. Here, we showed that phosphorylation of 53BP1 at serine 25 by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical brain organoids.
View Article and Find Full Text PDFHistone acetyltransferases and are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling.
View Article and Find Full Text PDFGene expression is tightly controlled during animal development to allow the formation of specialized cell types. Our understanding of how animals evolved this exquisite regulatory control remains elusive, but evidence suggests that changes in chromatin-based mechanisms may have contributed. To investigate this possibility, here we examine chromatin-based gene regulatory features in the closest relatives of animals, choanoflagellates.
View Article and Find Full Text PDFThe limited availability of cytokines in solid tumours hinders maintenance of the antitumour activity of chimeric antigen receptor (CAR) T cells. Cytokine receptor signalling pathways in CAR T cells can be activated by transgenic expression or injection of cytokines in the tumour, or by engineering the activation of cognate cytokine receptors. However, these strategies are constrained by toxicity arising from the activation of bystander cells, by the suboptimal biodistribution of the cytokines and by downregulation of the cognate receptor.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent form of dementia, disproportionately affecting women in disease prevalence and progression. Comprehensive analysis of the serum proteome in a common AD mouse model offers potential in identifying possible AD pathology- and gender-associated biomarkers. Here, we introduce a multiplexed, nondepleted mouse serum proteome profiling via tandem mass-tag (TMTpro) labeling.
View Article and Find Full Text PDFHistone acetyltransferases and are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling.
View Article and Find Full Text PDF53BP1 is a well-established DNA damage repair factor recently shown to regulate gene expression and critically influence tumor suppression and neural development. For gene regulation, how 53BP1 is regulated remains unclear. Here, we showed that 53BP1-serine 25 phosphorylation by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical organoids.
View Article and Find Full Text PDFRecent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment.
View Article and Find Full Text PDFBackground: Mass spectrometry (MS)-based proteomic analysis of posttranslational modifications (PTMs) usually requires the pre-enrichment of modified proteins or peptides. However, recent ultra-deep whole proteome profiling generates millions of spectra in a single experiment, leaving many unassigned spectra, some of which may be derived from PTM peptides.
Methods: Here we present JUMPptm, an integrative computational pipeline, to extract PTMs from unenriched whole proteome.
Histone variants, such as histone H3.3, replace canonical histones within the nucleosome to alter chromatin accessibility and gene expression. Although the biological roles of selected histone post-translational modifications (PTMs) have been extensively characterized, the potential differences in the function of a given PTM on different histone variants is almost always elusive.
View Article and Find Full Text PDFSkeletal muscle atrophy is a debilitating condition that occurs with aging and disease, but the underlying mechanisms are incompletely understood. Previous work determined that common transcriptional changes occur in muscle during atrophy induced by different stimuli. However, whether this holds true at the proteome level remains largely unexplored.
View Article and Find Full Text PDFAlthough somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported.
View Article and Find Full Text PDFHistones are the major proteinaceous component of chromatin in eukaryotic cells and an important part of the epigenome, affecting most DNA-related events, including transcription, DNA replication, and chromosome segregation. The properties of histones are greatly influenced by their post-translational modifications (PTMs), over 200 of which are known today. Given this large number, researchers need sophisticated methods to study histone PTMs comprehensively.
View Article and Find Full Text PDFJ Proteomics
August 2020
Trypanosome histone N-terminal sequences are very divergent from the other eukaryotes, although they are still decorated by post-translational modifications (PTMs). Here, we used a highly robust workflow to analyze histone PTMs in the parasite Trypanosoma cruzi using mass spectrometry-based (MS-based) data-independent acquisition (DIA). We adapted the workflow for the analysis of the parasite's histone sequences by modifying the software EpiProfile 2.
View Article and Find Full Text PDFInhibition of the H3K79 histone methyltransferase DOT1L has exhibited encouraging preclinical and early clinical activity in KMT2A (MLL)-rearranged leukemia, supporting the development of combinatorial therapies. Here, we investigated two novel combinations: dual inhibition of the histone methyltransferases DOT1L and EZH2, and the combination with a protein synthesis inhibitor. EZH2 is the catalytic subunit in the polycomb repressive complex 2 (PRC2), and inhibition of EZH2 has been reported to have preclinical activity in KMT2A-r leukemia.
View Article and Find Full Text PDFArtemisia annua is well known for biosynthesizing the antimalarial drug artemisinin. Here, a global proteomic profiling of A. annua is conducted with identification of a total of 13 403 proteins based on the genome sequence annotation database.
View Article and Find Full Text PDFDNA and histone proteins define the structure and composition of chromatin. Histone posttranslational modifications (PTMs) are covalent chemical groups capable of modeling chromatin accessibility, mostly due to their ability in recruiting enzymes responsible for DNA readout and remodeling. Mass spectrometry (MS)-based proteomics is the methodology of choice for large-scale identification and quantification of protein PTMs, including histones.
View Article and Find Full Text PDFLysine acetylation is an important posttranslational modification (PTM) that regulates the function of proteins by affecting their localization, stability, binding, and enzymatic activity. Aberrant acetylation patterns have been observed in numerous diseases, most notably cancer, which has spurred the development of potential therapeutics that target acetylation pathways. Mass spectrometry (MS) has become the most adopted tool not only for the qualitative identification of acetylation sites but also for their large-scale quantification.
View Article and Find Full Text PDFGlobal changes in chromatin organization and the cessation of transcription during mitosis are thought to challenge the resumption of appropriate transcription patterns after mitosis. The acetyl-lysine binding protein BRD4 has been previously suggested to function as a transcriptional "bookmark" on mitotic chromatin. Here, genome-wide location analysis of BRD4 in erythroid cells, combined with data normalization and peak characterization approaches, reveals that BRD4 widely occupies mitotic chromatin.
View Article and Find Full Text PDFWe present a system-level analysis of proteome, phosphoproteome, and chromatin state of precursors of muscle cells (myoblasts) differentiating into specialized myotubes. Using stable isotope labeling of amino acids in cell culture and nano-liqud chromatography-mass spectrometry/mass spectrometry, we found that phosphorylation motifs targeted by the kinases protein kinase C, cyclin-dependent kinase, and mitogen-activated protein kinase showed increased phosphorylation during myodifferentiation of LHCN-M2 human skeletal myoblast cell line. Drugs known to inhibit these kinases either promoted (PD0325901 and GW8510) or stalled (CHIR99021 and roscovitine) differentiation, resulting in myotube and myoblast phenotypes, respectively.
View Article and Find Full Text PDFEpigenetics has become a fundamental scientific discipline with various implications for biology and medicine. Epigenetic marks, mostly DNA methylation and histone post-translational modifications (PTMs), play important roles in chromatin structure and function. Accurate quantification of these marks is an ongoing challenge due to the variety of modifications and their wide dynamic range of abundance.
View Article and Find Full Text PDF