Central post stroke pain (CPSP) is an intractable neuropathic pain syndrome that occurs after the acute focal lesion of the central nervous system (CNS) due to a cerebrovascular cause. Epoxyeicosatrienoic acids (EETs) exert many pharmacological effects in vivo and in vitro, such as anti-apoptosis, anti-inflammatory, and anti-oxidative stress. Neuroinflammation and apoptosis are the potential pathophysiological mechanisms of neuropathic pain.
View Article and Find Full Text PDFBackground: Central post-stroke pain (CPSP) is a chronic and intolerable neuropathic pain syndrome following a cerebral vascular insult, which negatively impacts the quality of life of stroke survivors but currently lacks efficacious treatments. Though its underlying mechanism remains unclear, clinical features of hyperalgesia and allodynia indicate central sensitization due to excessive neuroinflammation. Recently, the crosslink between neuroinflammation and endoplasmic reticulum (ER) stress has been identified in diverse types of diseases.
View Article and Find Full Text PDFPharmacol Res
September 2020
Central post-stroke pain (CPSP) is chronic neuropathic pain due to a lesion or dysfunction of the central nervous system following cerebrovascular insult. This syndrome is characterized by chronic somatosensory abnormalities including spontaneous pain, hyperalgesia and allodynia, which localize to body areas corresponding to the injured brain region. However, despite its potential to impair activities of daily life and cause mood disorders after stroke, it is probably the least recognized complication of stroke.
View Article and Find Full Text PDFCentral poststroke pain (CPSP) is a neuropathic pain syndrome arising after a lesion of the central nervous system owing to cerebrovascular insult. Impaired daily activities and reduced quality of life in people suffering from CPSP justify the need for improved treatment. The detailed mechanism of CPSP is not well understood, but central disinhibition has been suggested.
View Article and Find Full Text PDFAnaphase-promoting complex (APC) with its coactivator Cdh1 is required to maintain the postmitotic state of neurons via degradation of Cyclin B1, which aims to prevent aberrant cell cycle entry that causes neuronal apoptosis. Interestingly, evidence is accumulating that apart from the cell cycle, APC-Cdh1 also involves in neuronal metabolism via modulating the glycolysis promoting enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3). Here, we showed that under oxygen-glucose deprivation and reperfusion (OGD/R), APC-Cdh1 was decreased in primary cortical neurons.
View Article and Find Full Text PDF