Publications by authors named "Zuo-sheng Li"

The critical doping structures of rare-earth atoms in the promising β-SiAlON phosphors have long been argued owing to the lack of direct evidence. Here, the exact locations and coordination of the Ce rare-earth atoms in the β-SiAlON structure have been examined using an atom-resolved Cs-corrected scanning transmission electron microscope. Three different occupation sites for the Ce atoms have been directly observed: two of them are in the structural channel coordinated with six and nine N(O) atoms, respectively; the other one is the unexpected substitution site for Si(Al).

View Article and Find Full Text PDF

Despite the fact that the luminescence reaction mechanism of aequorin has been intensively investigated, details in luminescence such as the effect of important amino acids residues and explicit water molecules on spectroscopic properties of coelenteramide remain unclear. In this work, the effect of amino acids residues His16, Tyr82, Trp86, Phe113, Trp129, Tyr132, explicit water molecules Wat505 and Wat405 on the spectral properties of CLM(-) has been studied by CAM-B3LYP, TD M06L and TD CAM-B3LYP methods in hydrophobic environment and aqueous solution. In hydrophobic environment, the amino acids or water molecules have no significant effect on the absorption.

View Article and Find Full Text PDF

The dynamics simulation and quantum chemical calculation are employed to investigate spectrum properties of deprotonation process of coelenteramide and two final states neutral state and phenolate anion. According to the calculation results, theoretical evidence supporting the luminescence mechanism hypothesis is proposed in a significant bioluminescence process. In vivo of marine bioluminescent organisms, if the protein motion provides the conditions for the deprotonation of coelenteramide in some protein molecules, the phenolate anion is completely deprotonated coelenteramide as an emitter in these protein molecules and emits fluorescence assigned to the lower energy peak.

View Article and Find Full Text PDF

The tree shrews, as an ideal animal model receiving extensive attentions to human disease research, demands essential research tools, in particular cellular markers and monoclonal antibodies for immunological studies. In this paper, a 1 365 bp of the full-length CD4 cDNA encoding sequence was cloned from total RNA in peripheral blood of tree shrews, the sequence completes two unknown fragment gaps of tree shrews predicted CD4 cDNA in the GenBank database, and its molecular characteristics were analyzed compared with other mammals by using biology software such as Clustal W2.0 and so forth.

View Article and Find Full Text PDF

The use of tree shrews (Tupaia belangeri) in human disease studies demands essential research tools, in particular cellular markers and their monoclonal antibodies for immunological studies. Here we cloned the full-length cDNAs encoding CD3E from total RNA of the spleen, liver and peripheral blood of tree shrews and analyzed their structural characteristics in comparison with other mammals by Discovery Studio software. The results showed that the open reading frame sequence of tree shrew CD3E was 582 bp, encoding 194 amino acids.

View Article and Find Full Text PDF

The mechanism of the reaction of imidogen (NH) with fulminic acid (HCNO) has been investigated theoretically using the multiconfigurational self-consistent-field theory (MCSCF), multireference Rayleigh-Schrodinger perturbation theory (RSPT2), and coupled cluster theory (CC) along with the complete basis set extrapolations (CBS). The calculations show that the NH + HCNO reaction takes place via an N → C addition mechanism predominantly by surmounting a small barrier (ca. ∼3 kcal/mol).

View Article and Find Full Text PDF

Classical Swine Fever Virus (CSFV) E2 protein eukaryotic expression plasmid pVAXE2 was constructed. The plasmid pVAXE2 was transformed into Salmonella choleraesuis C500 (S. C500) attenuated vaccine strain by electroporation to generate Salmonella choleraesuis engineering strain S.

View Article and Find Full Text PDF