Zhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2019
Chromothripsis is a catastrophic cellular event recently described in cancer in which chromosomes undergo massive deletion and rearrangement. Here, we report a case in which chromothripsis spontaneously cured a patient with WHIM syndrome, an autosomal dominant combined immunodeficiency disease caused by gain-of-function mutation of the chemokine receptor CXCR4. In this patient, deletion of the disease allele, CXCR4(R334X), as well as 163 other genes from one copy of chromosome 2 occurred in a hematopoietic stem cell (HSC) that repopulated the myeloid but not the lymphoid lineage.
View Article and Find Full Text PDFHaploinsufficiency of HDAC4 gene has been reported to result in brachydactyly-"mental retardation" syndrome (BDMR), a condition with significant intellectual impairment, brachydactyly type E, and typical facial features. Presented here are three individuals with haploinsufficiency of HDAC4 who have brachydactyly type E, non-dysmorphic facial features, and normal intelligence. This is in contradistinction to previous reports that haploinsufficiency of HDAC4 is sufficient to cause BDMR.
View Article and Find Full Text PDFBackground: Carney complex (CNC) is a multiple neoplasia syndrome caused by PRKAR1A-inactivating mutations. One-third of the patients, however, have no detectable PRKAR1A coding sequence defects. Small deletions of the gene were previously reported in few patients, but large deletions of the chromosomal PRKAR1A locus have not been studied systematically in a large cohort of patients with CNC.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is an autosomal recessive (AR) neuromuscular disease that is one of the most common lethal genetic disorders in children, with carrier frequencies as high as ∼1 in 35 in US Whites. As part of our genetic studies in the Hutterites from South Dakota, we identified a large 22 Mb run of homozygosity, spanning the SMA locus in an affected child, of which 10 Mb was also homozygous in three affected Hutterites from Montana, supporting a single founder origin for the mutation. We developed a haplotype-based method for identifying carriers of the SMN1 deletion that leveraged existing genome-wide SNP genotype data for ∼1400 Hutterites.
View Article and Find Full Text PDFBackground: Flavopiridol is a cyclin-dependent kinase inhibitor in phase II clinical development for treatment of various forms of cancer. When administered with a pharmacokinetically (PK)-directed dosing schedule, flavopiridol exhibited striking activity in patients with refractory chronic lymphocytic leukemia. This study aimed to evaluate pharmacogenetic factors associated with inter-individual variability in pharmacokinetics and outcomes associated with flavopiridol therapy.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is on the rise worldwide. HCC responds poorly to chemotherapy. Lapatinib is an inhibitor of epidermal growth factor receptor and HER2/NEU both implicated in hepatocarcinogenesis.
View Article and Find Full Text PDFBackground: Genetic variation in mRNA expression plays a critical role in human phenotypic diversity, but it has proven difficult to detect regulatory polymorphisms - mostly single nucleotide polymorphisms (rSNPs). Additionally, variants in the transcribed region, termed here 'structural RNA SNPs' (srSNPs), can affect mRNA processing and turnover. Both rSNPs and srSNPs cause allelic mRNA expression imbalance (AEI) in heterozygous individuals.
View Article and Find Full Text PDFBackground: Variants in numerous genes are thought to affect the success or failure of cancer chemotherapy. Interindividual variability can result from genes involved in drug metabolism and transport, drug targets (receptors, enzymes, etc), and proteins relevant to cell survival (e.g.
View Article and Find Full Text PDFMicroRNAs are strongly implicated in such processes as development, carcinogenesis, cell survival, and apoptosis. It is likely, therefore, that they can also modulate sensitivity and resistance to anticancer drugs in substantial ways. To test this hypothesis, we studied the pharmacologic roles of three microRNAs previously implicated in cancer biology (let-7i, mir-16, and mir-21) and also used in silico methods to test pharmacologic microRNA effects more broadly.
View Article and Find Full Text PDFBackground: Restriction landmark genomic scanning (RLGS) is one of the most successfully applied methods for the identification of aberrant CpG island hypermethylation in cancer, as well as the identification of tissue specific methylation of CpG islands. However, a limitation to the utility of this method has been the ability to assign specific genomic sequences to RLGS spots, a process commonly referred to as "RLGS spot cloning."
Results: We report the development of a virtual RLGS method (vRLGS) that allows for RLGS spot identification in any sequenced genome and with any enzyme combination.
The cystine-glutamate transporter SLC7A11 has been implicated in chemoresistance, by supplying cystine to the cell for glutathione maintenance. In the NCI-60 cell panel, SLC7A11 expression shows negative correlation with growth inhibitory potency of geldanamycin but not with its analog 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), which differs in the C-17 substituent in that the the methoxy moiety of geldanamycin is replaced by an amino group. Structure and potency analysis classified 18 geldanamycin analogs into two subgroups, "17-O/H" (C-17 methoxy or unsubstituted) and "17-N" (C-17 amino), showing distinct SLC7A11 correlation.
View Article and Find Full Text PDFAdvances in the understanding of cancer cell biology and response to drug treatment have benefited from new molecular technologies and methods for integrating information from multiple sources. The NCI-60, a panel of 60 diverse human cancer cell lines, has been used by the National Cancer Institute to screen >100,000 chemical compounds and natural product extracts for anticancer activity. The NCI-60 has also been profiled for mRNA and protein expression, mutational status, chromosomal aberrations, and DNA copy number, generating an unparalleled public resource for integrated chemogenomic studies.
View Article and Find Full Text PDFPurpose: A prerequisite for geldanamycin (GA, NSC122750) to targeting heat shock protein 90 and inhibiting tumor growth is sufficient intracellular drug accumulation. We hypothesized that membrane transporters on tumor cells determine at least in part the response to GA analogues.
Materials And Methods: To facilitate a systematic study of chemosensitivity across a group of GA analogues with similar chemical structures, we correlated mRNA expression profiles of most known transporters with growth inhibitory potencies of compounds in 60 tumor cell lines (NCI-60).
Glutathione detoxification has been broadly implicated in resistance to chemotherapy. This study explores the relationship between chemical structure and GSH-mediated chemoresistance. System xc-, the heterodimeric cystine/glutamate exchanger composed of SLC7A11 and SLC3A2, plays a role in maintaining cellular glutathione (GSH) levels.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2006
DNA methylation and histone acetylation are main epigenetic events regulating gene expression, serving as anticancer drug targets. A combination of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine with the histone deacetylase inhibitor depsipeptide synergistically induces apoptosis. To characterize genes involved in this process, we measured expression of 376 apoptosis-related genes with microarrays after treatment with the two inhibitors alone or in combination.
View Article and Find Full Text PDFThe chemotherapeutic agent camptothecin, 10-OH (CPT,10-OH), was shown to act synergistically with the epithelial growth factor receptor (EGFR) inhibitor (AG1478) against several transformed cell lines. To study the cellular response to these drugs, the non-small-cell lung carcinoma cell line, EKVX, was treated with these compounds either alone or in combination. We performed a proteomic analysis using capillary-HPLC coupled with electrospray ion trap mass spectrometry (capillary-LC-ESI/MS) of a tryptic digest to obtain a global protein profile of the EKVX cell line and identify changes in protein expression.
View Article and Find Full Text PDFCancer Chemother Pharmacol
March 2007
Purpose: A high-rate glycolysis is a fundamental property of solid tumors and is associated with an over-expression of glucose transporters and glycolytic enzymes. We hypothesize that over-expression of glucose transporters in tumors prevents apoptosis, promotes cancer cell survival, and confers drug resistance. Inhibition of glucose transporter will preferentially sensitize the anticancer effects of chemotherapeutic drugs to overcome drug resistance in hypoxia.
View Article and Find Full Text PDFPurpose: This study develops and evaluates a systematic approach to finding biomarker genes for predicting potency of anticancer drugs against tumor cells, focusing on gene families related to growth factor signaling.
Methods: Cytotoxic potencies of 119 drugs against 60 neoplastic cell lines (NCI-60) were correlated with expression of 343 genes, including 90 growth factors and receptors, 63 metalloproteinases, and 92 ras-like GTPases as downstream signaling factors. Progressively more stringent criteria and predictive models aim at identifying the smallest subset of genes predictive of cytotoxic potency.
Despite the marked advances in drug therapy, some patients do not respond favorably or suffer severe adverse drug effects. Pharmacogenetic studies have shown that polymorphisms of drug metabolizing enzymes, transporters and receptors contribute to variable drug response. Owing to the complexity of drug actions, a broader genomics approach aims at finding new drug targets and optimizing therapy for the individual patient.
View Article and Find Full Text PDFSLC7A11 (xCT), together with SLC3A2 (4F2hc), encodes the heterodimeric amino acid transport system x(c)-, which mediates cystine-glutamate exchange and thereby regulates intracellular glutathione levels. We used microarrays to analyze gene expression of transporters in 60 human cancer cell lines used by the National Cancer Institute for drug screening (NCI-60). The expression of SLC7A11 showed significant correlation with that of SLC3A2 (r = 0.
View Article and Find Full Text PDFHistone acetylation status, an epigenetic determinant of gene transcription, is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The potent HDAC inhibitor FK228 [(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo[8,7,6]-tricos-16-ene-3,6,9,22-pentanone] is a substrate for multidrug resistance protein (MDR1) and multidrug resistance-associated protein 1 (MRP1), both of which mediate FK228 resistance. To determine the mechanisms underlying acquired FK228 resistance, we developed four FK228-resistant cell lines from HCT-15, IGROV1, MCF7, and K562 cells by stepwise increases in FK228 exposure.
View Article and Find Full Text PDF