Publications by authors named "Zung Hang Wei"

Our living environment has been full of electromagnetic radiation (EMR) due to the prevailing electronic devices and equipment. Intermediate frequency electromagnetic field (IF-EMF) or waves constitute a significant part of EMR; therefore, an increasing number of household electrical appliances have become a source of IF-EMF, and concerns about IF-EMF on health are gaining more attention. However, little information is available about its impact on female reproductive traits, such as germ cell viability and early embryonic development, particularly at the cellular and molecular levels.

View Article and Find Full Text PDF

The use of magnetic nanoparticles (MNPs) magnetized on applying an alternating magnetic field (AMF) to stimulate the thermal characteristics and to induce tumor apoptosis is a currently active area of research in cancer treatment. In previous work, we developed biocompatible and superparamagnetic polystyrene-sulfonic-acid-coated magnetic nanoparticles (PSS-MNPs) as applications for magnetically labeled cell trapping, but without assessment of treatment effects on tumor diseases. In the present work, we examined PSS-MNP-induced magnetic fluid hyperthermia (MFH) on SK-Hep1 hepatocellular carcinoma (HCC) cells for lethal thermal effects with a self-made AMF system; an adjustable AMF frequency generated a variable intensity of magnetic field and induced MNP relaxation.

View Article and Find Full Text PDF

The development of novel magnetic nanoparticles (MNPs) with satisfactory biocompatibility for biomedical applications has been the subject of extensive exploration over the past two decades. In this work, we synthesized superparamagnetic iron oxide MNPs coated with polystyrene sulfonic acid (PSS-MNPs) and with a conventional co-precipitation method. The core size and hydrodynamic diameter of the PSS-MNPs were determined as 8-18 nm and 50-200 nm with a transmission electron microscopy and dynamic light scattering, respectively.

View Article and Find Full Text PDF

The ciliated protozoan Cryptocaryon irritans infects a wide range of marine fish and causes the highly lethal white spot disease. This parasite possesses three morphologically and physiologically distinct life stages: an infectious theront, a parasitic trophont, and an asexually reproductive tomont. In the past few years, several attempts have been made to help elucidate how C.

View Article and Find Full Text PDF

Metal-organic framework (MOF) based graphene oxide (GO) recently merits of attention because of the relative correspondence of GO with metal ions and organic binding linkers. Furthermore, introducing the GO to the Co-MOF to make a new nanoporous hybrid have are improved the selectivity and stability of the Co-MOF. Here the graphene oxide/cobalt metal organic framework (GO/Co-MOF) was synthesized by a solvothermal process using cobalt salt and terephthalic acid and used for biocidal activity, against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) that display homing and infiltration properties towards tumor cells are a promising cellular targeting vector for brain tumor therapy but are limited to local-regional delivery in current preclinical models. Here, we investigated whether placenta-derived MSCs (P-MSCs) are a superior cellular vector for systemic targeting of glioblastoma stem-like cells (GSCs), with an imaging modality to real-time monitor the trafficking P-MSCs to glioblastoma sites. Results demonstrated that P-MSCs had greater migratory activity towards GSCs and across blood-brain barrier compared with bone marrow-derived MSCs, and this activity was enhanced by hypoxia precondition.

View Article and Find Full Text PDF

This study designs a microscaled thermoelectric component featuring a nanogap of varying size (133-900 nm) between the tips of the component. Electricity and heat are transmitted between the gap of the tips through the thermionic emission of electrons. Because the gaps exhibit a discontinuous structure, the phonon's contribution to thermal conductivity can be virtually neglected, thereby enhancing the thermoelectric figure of merit (ZT) of the designed thermoelectric component.

View Article and Find Full Text PDF

Electrospinning technique is able to create nanofibers with specific orientation. Poly(vinyl alcohol) (PVA) have good mechanical stability but poor cell adhesion property due to the low affinity of protein. In this paper, extracellular matrix, gelatin is incorporated into PVA solution to form electrospun PVA-gelatin nanofibers membrane.

View Article and Find Full Text PDF

We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells.

View Article and Find Full Text PDF

Concentric magnetic structures (ring and square) with domain wall (DW) pinning geometry are designed for biological manipulation. Magnetic beads collection was firstly demonstrated to analyse the local magnetic field generated by DWs and the effective regions to capture magnetic targets of size 1 μm. Primary mouse embryonic fibroblasts (MEFs) are magnetically labeled by internalizing poly (styrene sulfonic acid) stabilized magnetic nanoparticles (PSS-MNPs) and then are selectively trapped by head-to-tail DWs (HH DWs) or tail-to-tail DWs (TT DWs) to be arranged into linear shape or cross shape.

View Article and Find Full Text PDF

We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process.

View Article and Find Full Text PDF

Developing methods that evaluate the cellular uptake of magnetic nanoparticles (MNPs) and nanotoxicity effects at single-cellular level are needed. In this study, magnetophoresis combining fluorescence based cytotoxicity assay was proposed to assess the viability and the single-cellular MNPs uptake simultaneously. Malignant cells (SKHep-1, HepG2, HeLa) were incubated with 10 nm anionic iron oxide nanoparticles.

View Article and Find Full Text PDF

A Wheatstone bridge giant magnetoresistance (GMR) biosensor was proposed here for the detection and counting of magnetic cells. The biosensor was made of a top-pinned spin-valve layer structure, and it was integrated with a microchannel possessing the function of hydrodynamic focusing that allowed the cells to flow in series one by one and ensured the accuracy of detection. Through measuring the magnetoresistance variation caused by the stray field of the magnetic cells that flowed through the microchannel above the GMR biosensor, we can not only detect and count the cells but we can also recognize cells with different magnetic moments.

View Article and Find Full Text PDF

A method is here proposed to fabricate ordered hexagonally packed cell culture substrates with hexagonally arranged cell patterning areas. We generated photo-sensitive polymeric microdroplets in a T-shaped microfluidic junction by an immiscible liquid, and then solidified the collective self-assembled hexagonal droplet array to obtain the cell culture substrate, on which we took the grooves formed between the solidified droplets as the hexagonally arranged cell patterning areas. The most promising advantage of our method is that we can actively tune the droplet size by simply adopting different volumetric flow rates of the two immiscible fluids to form cell culture substrates with differently sized cell patterning areas.

View Article and Find Full Text PDF

A magnetic zigzag nanowire device was designed for single cell biosensing. Nanowires with widths of 150, 300, 500, and 800 nm were fabricated on silicon trenches by electron beam lithography, electron beam evaporation, and lift-off processes. Magnetoresistance measurements were performed before and after the attachment of a single magnetic cell to the nanowires to characterize the magnetic signal change due to the influence of the magnetic cell.

View Article and Find Full Text PDF

The change of contact angle is one of the major subjects in the studies of electrowetting on dielectrics. A larger change in contact angle with a less applied electric potential has been pursued by the researchers on digital microfluidics. From previous research it is concluded that the effect of free charges in electrolytes on contact angles can almost be neglected.

View Article and Find Full Text PDF