Nat Rev Endocrinol
October 2024
Interferon regulatory factors (IRFs) comprise a family of nine transcription factors in mammals. IRFs exert broad effects on almost all aspects of immunity but are best known for their role in the antiviral response. Over the past two decades, IRFs have been implicated in metabolic physiology and pathophysiology, partly as a result of their known functions in immune cells, but also because of direct actions in adipocytes, hepatocytes, myocytes and neurons.
View Article and Find Full Text PDFThe role of leukocyte inflammatory markers and toll like receptors (TLRs)2/4 in pathologies associated with elevated resting heart rate (RHR) levels in healthy obese (HO) individuals is not well elucidated. Herein, we investigated the relationship of RHR with expression of leukocyte-inflammatory markers and TLRs in HO individuals. 58-obese and 57-lean participants with no history of a major medical condition, were recruited in this study.
View Article and Find Full Text PDFCeramide kinase (CERK) phosphorylates ceramide to produce ceramide-1-phosphate (C1P), which is involved in the development of metabolic inflammation. TNF-α modulates inflammatory responses in monocytes associated with various inflammatory disorders; however, the underlying mechanisms remain not fully understood. Here, we investigated the role of CERK in TNF-α-induced inflammatory responses in monocytes.
View Article and Find Full Text PDFObesity is associated with elevated levels of TNF-α and proinflammatory CD11c monocytes/macrophages. TNF-α mediated dysregulation in the plasticity of monocytes/macrophages is concomitant with pathogenesis of several inflammatory diseases, including metabolic syndrome, but the underlying mechanisms are incompletely understood. Since neutral sphingomyelinase-2 (nSMase2: SMPD3) is a key enzyme for ceramide production involved in inflammation, we investigated whether nSMase2 contributed to the inflammatory changes in the monocytes/macrophages induced by TNF-α.
View Article and Find Full Text PDFBackground/aims: TNF-α-mediated pro-inflammatory phenotypic change in monocytes is known to be implicated in the pathogenesis of metabolic inflammation and insulin resistance. However, the mechanism by which TNF-α-induces inflammatory phenotypic shift in monocytes is poorly understood. Since long-chain acyl-CoA synthetase 1 (ACSL1) is associated with inflammatory monocytes/macrophages, we investigated the role of ACSL1 in the TNF-α-driven inflammatory phenotypic shift in the monocytes.
View Article and Find Full Text PDF