Publications by authors named "Zun P"

Ordered clusters of water droplets levitating over a heated water surface can be used as chemical microreactors and computational devices. Here we show that a chemical reaction between melamine and cyanuric acid can occur during coalescence of pairs of droplets containing these reagents and lead to the sedimentation of the product, crystals of melamine cyanurate. In rotating droplets, the crystals flash with frequencies dependent mostly on the rotational velocity of the droplets defined by the rotor of the velocity field of the air-vapor flow above the heated water surface.

View Article and Find Full Text PDF

Surface of polyhydroxyalkanoate (PHA) films of varying monomer compositions are analyzed using atomic force microscopy (AFM) and unsupervised machine learning (ML) algorithms to investigate and classify films based on global attributes such as the scan size, film thickness, and monomer type. The experiment provides benchmarked results for 12 of the most widely used clustering algorithms via a hybrid investigation approach while highlighting the impact of using the Fourier transform (FT) on high-dimensional vectorized data for classification on various pools of data. Our findings indicate that the use of a one-dimensional (1D) FT of vectorized data produces the most accurate outcome.

View Article and Find Full Text PDF

In-stent restenosis is a recurrence of coronary artery narrowing due to vascular injury caused by balloon dilation and stent placement. It may lead to the relapse of angina symptoms or to an acute coronary syndrome. An uncertainty quantification of a model for in-stent restenosis with four uncertain parameters (endothelium regeneration time, the threshold strain for smooth muscle cell bond breaking, blood flow velocity and the percentage of fenestration in the internal elastic lamina) is presented.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluates how different assumptions about blood flow affect a model predicting in-stent restenosis (ISR) in coronary vessels, comparing a constant flow scenario with one assuming no vascular adaptation.
  • - It finds that in most cases, the growth dynamics of ISR remain similar regardless of the assumption made, except in areas with alternative flow pathways where differences can be observed.
  • - The results indicate that using a constant flow assumption is a reasonable approach for modeling ISR in commonly treated areas of the coronary arteries, particularly the proximal left anterior descending (LAD) and left circumflex (LCX) arteries.
View Article and Find Full Text PDF

Endothelial cells (ECs) play a major role in the healing process following angioplasty to inhibit excessive neointima. This makes the process of EC healing after injury, in particular EC migration in a stented vessel, important for recovery of normal vessel function. In that context, we present a novel particle-based model of EC migration and validate it against in vitro experimental data.

View Article and Find Full Text PDF

Background: Coronary artery restenosis is an important side effect of percutaneous coronary intervention. Computational models can be used to better understand this process. We report on an approach for validation of an in silico 3D model of in-stent restenosis in porcine coronary arteries and illustrate this approach by comparing the modelling results to in vivo data for 14 and 28 days post-stenting.

View Article and Find Full Text PDF

We explore the efficiency of a semi-intrusive uncertainty quantification (UQ) method for multiscale models as proposed by us in an earlier publication. We applied the multiscale metamodelling UQ method to a two-dimensional multiscale model for the wound healing response in a coronary artery after stenting (in-stent restenosis). The results obtained by the semi-intrusive method show a good match to those obtained by a black-box quasi-Monte Carlo method.

View Article and Find Full Text PDF

Purpose: Coronary artery stenosis, or abnormal narrowing, is a widespread and potentially fatal cardiac disease. After treatment by balloon angioplasty and stenting, restenosis may occur inside the stent due to excessive neointima formation. Simulations of in-stent restenosis can provide new insight into this process.

View Article and Find Full Text PDF

We describe our fully-coupled 3D multiscale model of in-stent restenosis, with blood flow simulations coupled to smooth muscle cell proliferation, and report results of numerical simulations performed with this model. This novel model is based on several previously reported 2D models. We study the effects of various parameters on the process of restenosis and compare with porcine data where we observe good qualitative agreement.

View Article and Find Full Text PDF

This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models.

View Article and Find Full Text PDF