Publications by authors named "Zulong Mo"

Auxin has emerged as a crucial regulator of plant nitrogen (N)-use efficiency (NUE) through indirect effects on plant growth and development and direct regulation of N metabolism-related genes. We previously reported DULL NITROGEN RESPONSE1 (DNR1) as an amino transferase that inhibits auxin accumulation and negatively regulates rice (Oryza sativa) NUE and grain yield. However, the identities of molecular regulators acting upstream of DNR1 await exploration.

View Article and Find Full Text PDF

Between the two major rice subspecies, indica varieties generally exhibit higher nitrate (NO) uptake and nitrogen (N)-use efficiency (NUE) than japonica varieties. Introducing efficient NO utilization alleles from indica into japonica could improve NUE, and at the same time uncover unknown regulators of NO metabolism. Here, we identify OsWRKY23 as a key regulator of NO uptake and NUE differences between indica and japonica rice.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved vacuolar process functioning in the degradation of cellular components for reuse. In plants, autophagy is generally activated upon stress and its regulation is executed by numbers of (), of which the ATG8 plays a dual role in both biogenesis of autophagosomes and recruitment of ATG8-interacting motif (AIM) anchored selective autophagy receptors (SARs). Such motif is either termed as AIM or ubiquitin-interacting motif (UIM), corresponding to the LC3-interacting region (LIR)/AIM docking site (LDS) or the UIM docking site (UDS) of ATG8, respectively.

View Article and Find Full Text PDF

Autophagy is a highly conserved degradation mechanism in eukaryotes, executing the breakdown of unwanted cell components and subsequent recycling of cellular material for stress relief through vacuole-dependence in plants and yeast while it is lysosome-dependent in animal manner. Upon stress, different types of autophagy are stimulated to operate certain biological processes by employing specific selective autophagy receptors (SARs), which hijack the cargo proteins or organelles to the autophagy machinery for subsequent destruction in the vacuole/lysosome. Despite recent advances in autophagy, the conserved and diversified mechanism of autophagy in response to various stresses between plants and animals still remain a mystery.

View Article and Find Full Text PDF