Cardiac fibroblasts (CFs) activation is a common response to most pathological conditions affecting the heart, characterized by increased cellular secretory capacity and increased expression of fibrotic markers, such as collagen I and smooth muscle actin type alpha (α-SMA). Fibrotic activation of CFs induces the increase in tissue protein content, with the consequent tissue stiffness, diastolic dysfunction, and heart failure. Therefore, the search for new mechanisms of CFs activation is important to find novel treatments for cardiac diseases characterized by fibrosis.
View Article and Find Full Text PDFSmall extracellular vesicles are nanosized vesicles (30-200 nm) that can ferry proteins, nucleic acids, and lipids between cells and therefore, have significant potential as biomarkers, drug delivery tools or therapeutic agents. SEVs of endothelial origin have been shown to -among other functions-reduce ischemia/reperfusion (I/R) injury in cardiomyocytes, but whether a pro-inflammatory state of the endothelium impairs the functionality of these SEVs remains to be elucidated. To test this, human umbilical vein endothelial cells cells were treated with TNF-α 10 ng/mL and the expression of the pro-inflammatory parameters VCAM-1, ICAM-1 and eNOS were determined by Western blot.
View Article and Find Full Text PDFCardiomyopathy is commonly observed in patients with autosomal dominant polycystic kidney disease (ADPKD), even when they have normal renal function and arterial pressure. The role of cardiomyocyte polycystin-1 (PC1) in cardiovascular pathophysiology remains unknown. PC1 is a potential regulator of BIN1 that maintains T-tubule structure, and alterations in BIN1 expression induce cardiac pathologies.
View Article and Find Full Text PDFDown syndrome (DS) is a genetic disorder caused by a trisomy of the human chromosome 21 (Hsa21). Overexpression of Hsa21 genes that encode proteins and non-coding RNAs (ncRNAs) can disrupt several cellular functions and biological processes, especially in the heart. Congenital heart defects (CHDs) are present in 45-50% of individuals with DS.
View Article and Find Full Text PDFCommunication between cells is a foundational concept for understanding the physiology and pathology of biological systems. Paracrine/autocrine signaling, direct cell-to-cell interplay, and extracellular matrix interactions are three types of cell communication that regulate responses to different stimuli. In the heart, cardiomyocytes, fibroblasts, and endothelial cells interact to form the cardiac tissue.
View Article and Find Full Text PDFCardiac hypertrophy is the result of responses to various physiological or pathological stimuli. Recently, we showed that polycystin-1 participates in cardiomyocyte hypertrophy elicited by pressure overload and mechanical stress. Interestingly, polycystin-1 knockdown does not affect phenylephrine-induced cardiomyocyte hypertrophy, suggesting that the effects of polycystin-1 are stimulus-dependent.
View Article and Find Full Text PDFPolycystin-1 (PC1) is a transmembrane protein found in different cell types, including cardiomyocytes. Alterations in PC1 expression have been linked to mitochondrial damage in renal tubule cells and in patients with autosomal dominant polycystic kidney disease. However, to date, the regulatory role of PC1 in cardiomyocyte mitochondria is not well understood.
View Article and Find Full Text PDFAng-(1-9) peptide is a bioactive vasodilator peptide that prevents cardiomyocyte hypertrophy in vitro and in vivo as well as lowers blood pressure and pathological cardiovascular remodeling; however, it has a reduced half-life in circulation, requiring a suitable carrier for its delivery. In this work, hybrid nanoparticles composed of polymeric nanoparticles (pNPs) based on Eudragit E/Alginate (EE/Alg), and gold nanospheres (AuNS), were developed to evaluate their encapsulation capacity and release of Ang-(1-9) under different experimental conditions. Hybrid pNPs were characterized by dynamic light scattering, zeta potential, transmission and scanning electron microscopy, size distribution, and concentration by nanoparticle tracking analysis.
View Article and Find Full Text PDFThe heart is critically dependent on mitochondrial respiration for energy supply. Ischemia decreases oxygen availability, with catastrophic consequences for cellular energy systems. After a few minutes of ischemia, the mitochondrial respiratory chain halts, ATP levels drop and ion gradients across cell membranes collapse.
View Article and Find Full Text PDFCardiac hypertrophy is an adaptive response to manage an excessive cardiac workload and maintain normal cardiac function. However, sustained hypertrophy leads to cardiomyopathy, cardiac failure, and death. Adrenergic receptors play a key role in regulating cardiac function under normal and pathological conditions.
View Article and Find Full Text PDFCardiomyocyte loss is the main cause of myocardial dysfunction following an ischemia-reperfusion (IR) injury. Mitochondrial dysfunction and altered mitochondrial network dynamics play central roles in cardiomyocyte death. Proteasome inhibition is cardioprotective in the setting of IR; however, the mechanisms underlying this protection are not well-understood.
View Article and Find Full Text PDFAims: Two-dimensional speckle-tracking echocardiography can assess left atrial (LA) function by measuring atrial volumes and deformation parameters (strain, strain rate). This cross-sectional analysis explores the association between ideal CV health (CVH), LA function, and systemic biomarkers in healthy individuals from the Chilean MAUCO Cohort.
Methods: We enrolled 95 MAUCO participants with different levels of CVH (mean age: 51 ± 8 years).
Antioxidants (Basel)
December 2019
Acute myocardial infarction is one of the leading causes of death worldwide and thus, an extensively studied disease. Nonetheless, the effects of ischemia/reperfusion injury elicited by oxidative stress on cardiac fibroblast function associated with tissue repair are not completely understood. Ascorbic acid, deferoxamine, and N-acetylcysteine (A/D/N) are antioxidants with known cardioprotective effects, but the potential beneficial effects of combining these antioxidants in the tissue repair properties of cardiac fibroblasts remain unknown.
View Article and Find Full Text PDFAims: Considerable evidence points to critical roles of intracellular Ca homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy.
View Article and Find Full Text PDFRationale: The regulator of calcineurin 1 (RCAN1) inhibits CN (calcineurin), a Ca-activated protein phosphatase important in cardiac remodeling. In humans, is located on chromosome 21 in proximity to the Down syndrome critical region. The hearts and brains of mice are more susceptible to damage from ischemia/reperfusion (I/R); however, the underlying cause is not known.
View Article and Find Full Text PDFInhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination.
View Article and Find Full Text PDFAltering chromatin structure through histone posttranslational modifications has emerged as a key driver of transcriptional responses in cells. Modulation of these transcriptional responses by pharmacological inhibition of class I histone deacetylases (HDACs), a group of chromatin remodeling enzymes, has been successful in blocking the growth of some cancer cell types. These inhibitors also attenuate the pathogenesis of pathological cardiac remodeling by blunting and even reversing pathological hypertrophy.
View Article and Find Full Text PDFThe alpha2-adrenergic receptor agonist Dexmedetomidine (Dex) is a sedative medication used by anesthesiologists. Dex protects the heart against ischemia-reperfusion (IR) and can also act as a preconditioning mimetic. The mechanisms involved in Dex-dependent cardiac preconditioning, and whether this action occurs directly or indirectly on cardiomyocytes, still remain unclear.
View Article and Find Full Text PDFAim: FK866 is an inhibitor of the NAD(+) synthesis rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Using FK866 to target NAD(+) synthesis has been proposed as a treatment for inflammatory diseases and cancer. However, use of FK866 may pose cardiovascular risks, as NAMPT expression is decreased in various cardiomyopathies, with low NAD(+) levels playing an important role in cardiovascular disease progression.
View Article and Find Full Text PDF