Publications by authors named "Zulfiqar A Rehan"

Water is an important component of our life. However, the unavailability of fresh water and its contamination are emerging problems. The textile industries are the major suppliers of contamination of water, producing high concentrations of heavy metals and hazardous dyes posing serious health hazards.

View Article and Find Full Text PDF

Photocatalysis is an efficient and an eco-friendly way to eliminate organic pollutants from wastewater and filtration media. The major dilemma coupled with conventional membrane technology in wastewater remediation is fouling. In this study, the photocatalytic degradation potential of novel thermoplastic polyurethane (TPU) based NiO on aminated graphene oxide (NH-GO) nanocomposite membranes was explored.

View Article and Find Full Text PDF

Water scarcity has become one of the most significant problems globally. Membrane technology has gained considerable attention in water treatment technologies. Polymeric nanocomposite membranes are based on several properties, with enhanced water flux, high hydrophilicity and anti-biofouling behavior, improving the membrane performance, flexibility, cost-effectiveness and excellent separation properties.

View Article and Find Full Text PDF

Ultrasound imaging is a widely used technique in every health care center and hospital. Ultrasound gel is used as a coupling medium in all ultrasound procedures to replace air between the transducer and the patient's skin, as ultrasound waves have trouble in traveling through air. This research was performed to formulate an inexpensive alternative to commercially available ultrasound gel as it is expensive and imported from other countries.

View Article and Find Full Text PDF

Rapid industrialization is causing a serious threat for the environment. Therefore, this research was aimed in developing ceramic cobalt ferrite (CoFeO) nanocomposite photocatalyst coated with coal fly ash (CFA-CoFeO) using facile hydrothermal synthesis route and their applications against methylene blue. The pristine cobalt ferrite photocatalyst was also prepared, characterized, and applied for efficiency comparison.

View Article and Find Full Text PDF

Emergence of membrane technology for effective performance is qualified due to its low energy consumption, no use of chemicals, high removal capacity and easy accessibility of membrane material. The hydrophobic nature of polymeric membranes limits their applications due to biofouling (assemblage of microorganisms on surface of membrane). Polymeric nanocomposite membranes emerge to alleviate this issue.

View Article and Find Full Text PDF

The co-precipitation and in situ modified Hummers' method was used to synthesize Nickel Spinal Ferrites (NiFe) nanoparticles and NiFe coated with Thermally Reduced Graphene Oxide (TRGO) (NiFe-TRGO) nanoparticles, respectively. By using polyvinyl chloride (PVC), tetrahydrofuran (THF), and NiFe-TRGO, the nanocomposite film was synthesized using the solution casting technique with a thickness of 0.12-0.

View Article and Find Full Text PDF

Hydrogels prepared from polymers have been proposed for tissue regeneration and the treatment of bruise wounds. In this research work, we synthesized a L.-based wound-healing hydrogel with recognized antimicrobial activity for the healing of cutaneous lesions, drawing on its healing potential.

View Article and Find Full Text PDF

In this study, cellulose acetate (CA) was blended with sulfonated graphene oxide (SGO) nanomaterials to endow a nanocomposite membrane for wastewater treatment with improved hydrophilicity and anti-biofouling behavior. The phase inversion method was employed for membrane fabrication using tetrahydrofuran (THF) as the solvent. The characteristics of CA-SGO-doped membranes were investigated through thermal analysis, contact angle, SEM, FTIR, and anti-biofouling property.

View Article and Find Full Text PDF

A novel, functionalized graphene oxide-based cellulose acetate membrane was fabricated using the phase inversion method to improve the membrane characteristics and performance. We studied the effect of aminated graphene oxide (NH-GO) composite on the CA membrane characteristics and performance in terms of membrane chemistry, hydrophilicity, thermal and mechanical stability, permeation flux, and antibacterial activity. The results of contact angle and water flux indicate the improved hydrophilic behavior of composite membranes in comparison to that of the pure CA membrane.

View Article and Find Full Text PDF

The formation of new scaffolds to enhance healing magnitude is necessarily required in biomedical applications. Granulation tissue formation is a crucial stage of wound healing in which granulation tissue grows on the surface of a wound by the formation of connective tissue and blood vessels. In the present study, porous hydrogels were synthesized using chitosan incorporating latex of the plant by using a freeze-thaw cycle to stimulate the formation of granulation tissue and angiogenesis in wound healing applications.

View Article and Find Full Text PDF

This study aims to explore the photocatalytic potential of graphene-oxide-based metal ferrites for the degradation of acetamiprid (an odorless neonicotinoid pesticide). Metal (Mn and Ni) ferrites (along with their graphene oxide composites) were prepared by the hydrothermal method while graphene oxide (GO) was synthesized using a modified Hummer's method. The composites were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

In this study, the bacterial strain CEES 33 was isolated from the coastal area of the Red Sea, Jeddah, Kingdom of Saudi Arabia. The bacterium isolate was identified and characterized by using biochemical and molecular methods. The isolate CEES 33 has been identified as Gram-negative rod shaped and cream pigmented spherical colonies.

View Article and Find Full Text PDF

We demonstrated one-step synthesis of silver nanoparticles (AgNPs) from Cassia fistula fruit extract and their antibacterial activity against E. coli and K. pneumoniae.

View Article and Find Full Text PDF

An optical assay for the rapid determination and chemical speciation of Fe/Fe species has been proposed for the first time on a polyether sulfone (PES) membrane platform. The small pore size and low wettability (θ ∼82°) of the membrane disallowed the dissipation of analyte droplets on the surface, thus localizing it onto nanoliter arrayed 1,10-phenanthroline spots. Under optimized conditions and within ∼5 min, an acceptable limit of detection (0.

View Article and Find Full Text PDF

Background: The membrane processes are interesting and economical techniques for reuse of municipal and industrial wastewater as well as seawater desalination. However their drawbacks can be resumed in the fouling and biofouling due to the deposition and adsorption phenomenon of the components and the development of biofilm on membrane surface. Several studies have focused on the effect of the incorporation of nanoparticles in polymeric membrane matrix on the biofouling properties.

View Article and Find Full Text PDF