Covalent organic frameworks (COFs) are a promising platform for heterogeneous photocatalysis due to their stability and design diversity, but their potential is often restricted by unmanageable targeted excitation and charge transfer. Herein, a bimetallic COF integrating photosensitizers and catalytic sites is designed to facilitate locally ultrafast charge transfer, aiming to improve the photocatalytic reduction of CO. The strategy uses a "one-pot" method to synthesize the bimetallic COF (termed PBCOF) through in situ Schiff-base condensation of Pyrene with MBpy (M = Ru, Re) units.
View Article and Find Full Text PDFAlthough various antibacterial strategies have been developed, antibiotic chemotherapy remains the primary clinical treatment for bacterial infections. To address the limitations associated with the traditional antibiotic therapy, like burst drug release, rapid drug clearance, and the emergence of drug resistance, it is highly desirable to develop drug release systems that can realize controlled and sustained drug release to enhance the therapeutic efficacy. Herein, we present a novel drug release system, CIP@SU-102, which shows superior and long-lasting antibacterial activity.
View Article and Find Full Text PDFPathogenic bacteria have consistently posed a formidable challenge to human health, creating the critical need for effective antibacterial solutions. In response, enzyme-metal-organic framework (MOF) composites have emerged as a promising class of antibacterial agents. This study focuses on the development of an enzyme-MOF composite based on HZIF-8, incorporating the advantages of simple synthesis, ZIF-8 antibacterial properties, lysozyme hydrolysis, and high biological safety.
View Article and Find Full Text PDFBackground: Limited studies have explored the association between sexual factors [age at first sexual intercourse (AFS) and lifetime number of sexual partners (LNSP)] and cardiovascular diseases (CVDs), leaving the causality inconclusive.
Methods: We performed a bi-directional Mendelian randomization (MR) study to investigate the causality between sexual factors and CVDs, including coronary artery disease, myocardial infarction, atrial fibrillation (AF), heart failure (HF), and ischemic stroke (IS). Single-nucleotide polymorphisms (SNPs) for sexual factors were extracted from the UK Biobank.
The abuse of antibiotics leads to an increasing emergence of drug-resistant bacteria, which not only causes a waste of medical resources but also seriously endangers people's health and life safety. Therefore, it is highly desirable to develop an efficient antibacterial strategy to reduce the reliance on traditional antibiotics. Antibacterial photodynamic therapy (aPDT) is regarded as an intriguing antimicrobial method that is less likely to generate drug resistance, but its efficiency still needs to be further improved.
View Article and Find Full Text PDFAntibacterial photodynamic therapy (aPDT) is regarded as one of the most promising antibacterial therapies due to its nonresistance, noninvasion, and rapid sterilization. However, the development of antibacterial materials with high aPDT efficacy is still a long-standing challenge. Herein, we develop an effective antibacterial photodynamic composite UiO-66-(SH)@TCPP@AgNPs by Ag encapsulation and 4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP) dopant.
View Article and Find Full Text PDFHydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metalated organic building blocks (also termed as tectons) by hydrogen bonding, π-π stacking, and other intermolecular interactions, have become an emerging class of multifunctional porous materials. So far, a library of HOFs with high porosity has been synthesized based on versatile tectons and supramolecular synthons. Benefiting from the flexibility and reversibility of H-bonds, HOFs feature high structural flexibility, mild synthetic reaction, excellent solution processability, facile healing, easy regeneration, and good recyclability.
View Article and Find Full Text PDFBackground: Several observational studies have identified that handgrip strength was inversely associated with cardiovascular diseases (CVDs). Nevertheless, causality remains controversial. We conducted Mendelian randomization (MR) analysis to examine whether handgrip strength and risk of CVDs are causally associated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Although tremendous progress has been achieved in the field of hydrogen-bonded organic frameworks (HOFs), the low stability, small/none pores, and difficult functionality severely obstruct their development. Herein, a novel robust mesoporous HOF (HOF-FAFU-1) decorated with a high density of free hydroxy moieties has been designed and readily synthesized in the synthesis. In HOF-FAFU-1, the planar building blocks are connected to each other by typical intermolecular carboxylate dimers to form two-dimensional (2D) layers with topology, which are further connected to their adjacent layers by face-to-face π-π interactions to obtain a three-dimensional (3D) open mesoporous framework.
View Article and Find Full Text PDFHypochlorite (ClO-) is widely used as a disinfectant, whose residue content in water should be strictly controlled due to the potential threat to human health in an inappropriate concentration. Herein, dual-emissive metal-organic frameworks with a UiO-66 prototype structure, PDA/Eu/PDA-UiO-66-NH2(x), were elegantly designed and prepared by a mixed ligand assembly and sequential post-synthesis strategy. Since blue emission is sensitive to ClO-, PDA/Eu/PDA-UiO-66-NH2(40) was selected as a model nanosensor for ratiometric and turn-on sensing of ClO- while red emission acts as a reference signal.
View Article and Find Full Text PDFA microporous three-dimensional (3D) hydrogen-bonded organic framework (HOF-20) has been constructed from an aromatic-rich tetratopic carboxylic acid, 5-(2,6-bis(4-carboxyphenyl)pyridin-4-yl)isophthalic acid (HBCPIA). The activated HOF-20a has a moderately high Brunauer-Emmett-Teller (BET) surface area of 1323 m g and excellent stability in water and HCl aqueous solution. HOF-20 exhibits highly efficient turn-up fluorescent sensing of aniline in water with a detection limit of 2.
View Article and Find Full Text PDFThe detection of hypochlorite (ClO) content in tap water is extremely important because excess amounts of hypochlorite can convert into highly toxic species and inadequate amounts of hypochlorite cannot fully kill bacteria and viruses. Although several metal-organic frameworks (MOFs) have been successfully employed as fluorescent sensors for hypochlorite detection, all these sensors are based on single emission that responds to the dose of hypochlorite. Ratiometric sensors are highly desirable, which can improve the sensitivity, accuracy, and reliability via self-calibration.
View Article and Find Full Text PDFThe restriction of sulfur content in fuels has become increasingly stringent as a result of the growing environmental concerns. Although several MOF-derived materials like POM@MOF composites have shown the ability to catalyze oxidative desulfurization (ODS), their catalytic activities inevitably obstructed by the encapsulated catalytic sites like POM due to the blockage of cavities. Therefore, MOFs with intrinsic and accessible catalytic sites are highly desirable for their applications in ultradeep ODS.
View Article and Find Full Text PDFCarbon dots doped with nitrogen and copper have been synthesized via a hydrothermal method. They possess favorable peroxidase-like catalytic activity over a wide range of pH values and temperatures. Specifically, they were used to catalyze the oxidation of ortho- and para-phenylenediamine (OPD and PPD) by HO.
View Article and Find Full Text PDFClean fuels with extremely low sulfur content are highly desirable due to environmental concerns. Herein, three water-stable and eco-friendly metal-organic frameworks with tunable window diameters, denoted as MOF-808X, have been employed as PTA solid supports. An array of PTA@MOF-808X composites were facilely synthesized via the encapsulation strategy.
View Article and Find Full Text PDFNatural enzyme mimetics with high catalytic activity at nearly neutral pH values are highly desired for their applications in biological systems. Herein for the first time a stable MOF, namely MOF-808, has been shown to possess high intrinsic peroxidase-like catalytic activity under acidic, neutral, and alkaline conditions. As a novel peroxidase mimetic, MOF-808 can effectively catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine when HO serves as oxidant, accompanied by a significant color variation in the solution.
View Article and Find Full Text PDFA 3D water-stable anionic metal-organic framework [Zn4(hpdia)2]·[NH2(CH3)2]·3DMF·4H2O (FJI-C4) was constructed based on an elaborate phosphorus-containing ligand 5,5'-(hydroxyphosphoryl)diisophthalic acid (H5hpdia). FJI-C4 with narrow one-dimensional (1D) pore channels exhibits high selectivity of C3H8/CH4 and C2H2/CH4. It is the first time for the MOF which contains phosphorus for selective separation of methane from natural gas and pyrolysis gas.
View Article and Find Full Text PDFOrganic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can separate and reuse them. Here, we report the synthesis and characterization of a microporous anion metal-organic framework (MOF) with Lewis basic sites-rich based on TDPAT (2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine) ligand, FJI-C2, which shows high adsorption and separation of cationic dye based on the charge-exclusive effect. Compared to other MOF materials, FJI-C2 shows the largest adsorption amount of methylene blue (1323 mg/g) at room temperature due to the nature of the anion frameworks and high surface area/pore volume.
View Article and Find Full Text PDFElectrochemically-assisted microwave deposition technology, a facile method for the fabrication of luminescent metal-organic framework (LMOF) films, is presented herein. This method was further developed into a versatile method for preparing patterned LMOF films. The strategy based on this method can spatially locate microcrystals of MOFs on a surface, which provides great promise in anti-counterfeiting barcode applications.
View Article and Find Full Text PDFA three-dimensional microporous anionic metal-organic framework (MOF) (Et4N)3[In3(TATB)4] (FJI-C1, H3TATB=4,4',4''-s-triazine-2,4,6-triyltribenzoic acid) with large unit cell volume has been synthesized. Assisted by the organic cation group Et4N in the pores of the compound, FJI-C1 not only shows high adsorption uptakes of C2 and C3 hydrocarbons, but also exhibits highly selective separation of propane, acetylene, ethane, and ethylene from methane at room temperature. Furthermore, it also exhibits high separation selectivity for propane over C2 hydrocarbons and acetylene can be readily separated from their C2 hydrocarbons mixtures at low pressure due to the high selectivity for C2H2 in comparison to C2H4 and C2H6.
View Article and Find Full Text PDFHighly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) encapsulated in the mesocages of amine-functionalized metal-organic frameworks MIL-101(Cr)-NH2 has been prepared by an anion-exchange method. PTA anions (PW12O40(3-)) are stabilized in the mesocages via the electrostatic interaction with amino groups of the MIL-101(Cr)-NH2. The obtained catalyst (denoted PTA@MIL-101(Cr)-NH2) exhibits high catalytic activity in the extractive and catalytic oxidative desulfurization (ECODS) system under mild conditions.
View Article and Find Full Text PDFThrough judicious choice of the ligands and patient regulation of the solvent conditions, three unique chiral coordination polymeric isomers have been synthesized. Their structures, gas adsorption, and structural interconversion have been studied. One of the isomers displays dynamic behavior, and its use in the enantioselective separation of chiral alcohols has also been reported.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs), also known as coordination polymers (CPs), are crystalline materials constructed from metal ions or clusters bridged by organic ligands to form one-, two-, or three-dimensional infinite networks. In contrast with the prolific production of MOFs based on rigid ligands (RL-MOFs), the design, syntheses and applications of MOFs based on flexible ligands (FL-MOFs) are somewhat overlooked. Although sacrificing a measure of control, the use of flexible ligands may provide unique opportunities to obtain novel crystalline framework materials exhibiting desirable attributes.
View Article and Find Full Text PDFNew porous metal-organic framework (MOF) films based on the flexible ligand 1,3,5-tris[4-(carboxyphenyl)oxamethyl]-2,4,6-trimethylbenzene (H3TBTC) were fabricated on α-Al2O3 substrates under solvent thermal conditions. The factors affecting the fabrication of films, such as the temperature of pre-activation and the dosage of the reagents, were investigated. Tuning the subtle factors on film fabrications, a series of MOF thin films with different morphologies and grain sizes were prepared.
View Article and Find Full Text PDF