Publications by authors named "Zui-Harng Lee"

Article Synopsis
  • Ligand 1 is a modified macrocycle that acts as a highly effective fluorescent chemosensor specifically for copper ions (Cu), showcasing both monomer and excimer emissions due to its unique structure.
  • When ligand 1 binds with Cu, the excimer emission decreases while the monomer emission increases, indicating a strong interaction with Cu.
  • Comprehensive studies revealed a 1:1 binding ratio with a significant association constant, and the sensor has a low detection limit of 185 nM for Cu ions, supported by various analytical methods.
View Article and Find Full Text PDF

Combination therapy merges chemical photodynamic therapy (CPDT) to improve cancer treatment. It synergizes chemotherapy with photodynamic therapy (PDT), using photosensitizers to produce reactive oxygen species (ROS) when exposed to light, effectively killing drug-resistant cancer cells. It is not affected by drug resistance, making it an attractive option for combination with chemotherapy.

View Article and Find Full Text PDF

In this study, we introduced dual-targeting folic acid (FA) and hyaluronic acid (HA) modified on the surface of rice husk mesoporous silica nanoparticles (rMSNs). The rMSNs were employed as a drug delivery system loaded with camptothecin (CPT) as a model drug, Eu ions as a photosensitizer for photodynamic therapy (PDT), bismuth (Bi) for photothermal therapy (PTT), and Gd ions for magnetic resonance imaging (MRI) to develop novel nanoparticles, rMSN-EuGd-Bi@CPT-HA-FA, with dual-targeted function and triple therapy for cancer treatment. The results of the cell cytotoxicity experiment showed that the A549 cancer cells had a survival rate of approximately 35% when treated with 200 μg mL of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 15 min.

View Article and Find Full Text PDF

Fucoidan derived from brown algae has been shown to exhibit antitumor and antioxidant effects, so research on sulfated polysaccharides is increasing. The purpose of this study was to evaluate the characteristics and biological activity of fucoidan that was extracted at two temperatures (65 and 80 °C) from Sargassum ilicifolium (Turner) C. Agardh from five regions of Taiwan.

View Article and Find Full Text PDF

In this study, we used the nanoparticle delivery system to reduce the side effect of conventional cancer treatment- radiation therapy and chemotherapy. We used rice husk silicon source mesoporous silica nanoparticle doped in Eu and Gd as the carrier in the delivery system and to enable fluorescence and MRI dual-imaging functions for follow-up therapy. In addition, we choose a popular seaweed extract-fucoidan was extracted from the same brown algae-Sargassum aquifolium collected from Taiwan-Pingtung-Kenting-Chuanfan Rock.

View Article and Find Full Text PDF

Traditional treatment of cancers such as chemotherapy still causes many side effects after the treatment even nowadays, therefore combination therapies by using drug delivery systems are valued by more and more scientists. However, loading multiple drugs in the nanoparticles for drug delivery system may cause insufficient drugs or functional groups, which might let the nanomaterial have fewer functions. Therefore, making the mesoporous silica nanoparticles (MSNs) have photodynamic therapy function by "doping " lanthanide ions into the material structure, can evade this problem.

View Article and Find Full Text PDF

Fucoidan is a sulfated polysaccharide that is mainly extracted from brown algae. In this study, a simple and efficient method of hot water extraction, which is commonly used in industry, was used to obtain crude polysaccharides. Furthermore, agricultural waste was our source of biogenic silica, and it was then synthesized into drug carrier-nanoparticles.

View Article and Find Full Text PDF