Surface enhanced Raman scattering (SERS) is a widely used analytical technique for detecting trace-level molecules based on an indispensable SERS substrate. SERS substrates with high tailorability are assumed to be attractive and desirable for SERS detection, because the substrates match the need for the selective detection of different species. Nevertheless, the rational design of such SERS substrates is rather challenging for both noble-metal and semiconductor substrates.
View Article and Find Full Text PDFSemiconductor-based surface-enhanced Raman spectroscopy (SERS) substrates represent a new frontier in the field of SERS. However, the application of semiconductor materials as SERS substrates is still seriously impeded by their low SERS enhancement and inferior detection sensitivity, especially for non-metal-oxide semiconductor materials. Herein, we demonstrate a general oxygen incorporation-assisted strategy to magnify the semiconductor substrate-analyte molecule interaction, leading to significant increase in SERS enhancement for non-metal-oxide semiconductor materials.
View Article and Find Full Text PDF