The purpose was to investigate the surface characteristics of various resin-based materials by immersing in probiotic beverages. A total of 420 disc-shaped samples (5 mm × 2 mm) were prepared from resin-based composites. Samples were divided into four groups and immersed for 10 min/day for 1 month in either a probiotic sachet, kefir, kombucha, or artificial saliva (control).
View Article and Find Full Text PDFPurpose: To investigate the effects of COVID-19 fear on oral health status.
Materials And Methods: A total of 1227 participants were enrolled in the study. The online survey link was circulated and responses were received.
Statement Of Problem: The repairability of computer-aided design and computer-aided manufacturing (CAD-CAM) composite resins might be adversely affected by the high degree of matrix polymerization that occurs during their manufacturing process. However, information on their repairability is lacking.
Purpose: The purpose of this in vitro study was to evaluate the microtensile bond strength of CAD-CAM composite resins subjected to simulated repair procedures by using varying surface treatments and universal adhesives.
Purpose: The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols.
Materials And Methods: Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC).