Biomimetic and bioinspired design is not only a potent resource for roboticists looking to develop robust engineering systems or understand the natural world. It is also a uniquely accessible entry point into science and technology. Every person on Earth constantly interacts with nature, and most people have an intuitive sense of animal and plant behaviour, even without realizing it.
View Article and Find Full Text PDFFlapping wings produce lift and thrust in bio-inspired aerial robots, leading to quiet, safe and efficient flight. However, to extend their application scope, these robots must perch and land, a feat widely demonstrated by birds. Despite recent progress, flapping-wing vehicles, or ornithopters, are to this day unable to stop their flight.
View Article and Find Full Text PDFThis review describes the current state of knowledge relating to scientific literature on welfare indicators for goats. Our aim was to provide an overview of animal-based indicators for on-farm welfare assessments. We performed a literature search and extracted 96 relevant articles by title, abstract, and full-text screening.
View Article and Find Full Text PDFThe value society assigns to animal welfare in agricultural productions is increasing, resulting in ever-enhancing methods to assess the well-being of farm animals. The aim of this study was to review the scientific literature to obtain an overview of the current knowledge on welfare assessments for sheep and to extract animal-based welfare indicators as well as welfare protocols with animal-based indicators. By title and abstract screening, we identified five protocols and 53 potential indicators from 55 references.
View Article and Find Full Text PDFRobotic vehicles that are capable of autonomously transitioning between various terrains and fluids have received notable attention in the past decade due to their potential to navigate previously unexplored and/or unpredictable environments. Specifically, aerial-aquatic mobility will enable robots to operate in cluttered aquatic environments and carry out a variety of sensing tasks. One of the principal challenges in the development of such vehicles is that the transition from water to flight is a power-intensive process.
View Article and Find Full Text PDFGlycerophospholipids are the main constituents of the biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. The present work reports the characterization of the alkyl-dihydroxyacetonephosphate synthase TbADS that catalyzes the committed step in ether glycerophospholipid biosynthesis. TbADS localizes to the glycosomal lumen.
View Article and Find Full Text PDFFrom millimeter-scale insects to meter-scale vertebrates, several animal species exhibit multimodal locomotive capabilities in aerial and aquatic environments. To develop robots capable of hybrid aerial and aquatic locomotion, we require versatile propulsive strategies that reconcile the different physical constraints of airborne and aquatic environments. Furthermore, transitioning between aerial and aquatic environments poses substantial challenges at the scale of microrobots, where interfacial surface tension can be substantial relative to the weight and forces produced by the animal/robot.
View Article and Find Full Text PDFBackground: Trypanosomatids such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi belong to the order Kinetoplastida and are the source of many significant human and animal diseases. Current treatment is unsatisfactory and is compromised by the rising appearance of drug resistant parasites. Novel and more effective chemotherapeutics are urgently needed to treat and prevent these devastating diseases, which relies on the identification of essential, parasite specific targets that are absent in the host.
View Article and Find Full Text PDFGlycerophospholipids are the most abundant constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans and nagana in cattle. They are essential cellular components that fulfill various important functions beyond their structural role in biological membranes such as in signal transduction, regulation of membrane trafficking or control of cell cycle progression. Our previous studies have established that the glycerol-3-phosphate acyltransferase TbGAT is dispensable for growth, viability, and ester lipid biosynthesis suggesting the existence of another initial acyltransferase(s).
View Article and Find Full Text PDFLeishmaniasis is an important disease mediated by the protozoan parasite via the bite of the female sandfly insect vector. Leishmaniasis is endemic in the tropical and subtropical regions. The most common form of the disease is cutaneous leishmaniasis, which affects more than 10 million people worldwide and includes at least 1.
View Article and Find Full Text PDFGlycerolipids are the main constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. Importantly, they occur as a structural component of the glycosylphosphatidylinositol lipid anchor of the abundant cell surface glycoproteins procyclin in procyclic forms and variant surface glycoprotein in bloodstream form, that play crucial roles for the development of the parasite in the insect vector and the mammalian host, respectively. The present work reports the characterization of the glycerol-3-phosphate acyltransferase TbGAT that initiates the biosynthesis of ester glycerolipids.
View Article and Find Full Text PDFPhosphatidylethanolamine methyltransferases are biosynthetic enzymes that catalyze the transfer of one or more methyl group(s) from S-adenosyl-L-methionine onto phosphatidylethanolamine, monomethyl-phosphatidylethanolamine, or dimethyl-phosphatidylethanolamine to give either monomethyl-phosphatidylethanolamine, dimethyl-phosphatidylethanolamine or phosphatidylcholine. These enzymes are ubiquitous in animal cells, fungi, and are also found in approximately 10% of bacteria. They fulfill various important functions in cell physiology beyond their direct role in lipid metabolism such as in insulin resistance, diabetes, atherosclerosis, cell growth, or virulence.
View Article and Find Full Text PDFPhosphatidylcholine (PC) is the most abundant phospholipid in the membranes of the human parasite Leishmania. It is synthesized via two metabolic routes, the de novo pathway that starts with the uptake of choline, and the threefold methylation of phosphatidylethanolamine. Choline was shown to be dispensable for Leishmania; thus, the methylation pathway likely represents the primary route for PC production.
View Article and Find Full Text PDFEther glycerolipid biosynthesis in Leishmania major initiates with the acylation of dihydroxyacetonephosphate by the glycosomal dihydroxyacetonephosphate acyltransferase LmDAT. We previously reported that a null mutant of LmDAT is severely affected in logarithmic growth, survival during stationary phase, and in virulence in mice. In addition, it lacks all ether glycerolipids, produces altered forms of the ether-lipid based virulence factors lipophosphoglycan and increased levels of GPI-anchored protein gp63.
View Article and Find Full Text PDFEther glycerolipids of Leishmania major are important membrane components as well as building blocks of various virulence factors. In L. major, the first enzyme of the ether glycerolipid biosynthetic pathway, LmDAT, is an unusual, glycosomal dihydroxyacetonephosphate acyltransferase important for parasite's growth and survival during the stationary phase, synthesis of ether lipids, and virulence.
View Article and Find Full Text PDFThe G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is the most common genetic cause of Parkinson's disease (PD), accounting for a significant proportion of both autosomal dominant familial and sporadic PD cases. Our aim in the present study is to generate a mammalian model of mutant G2019S LRRK2 pathogenesis, which reproduces the robust nigral neurodegeneration characteristic of PD. We developed adenoviral vectors to drive neuron-specific expression of full-length wild-type or mutant G2019S human LRRK2 in the nigrostriatal system of adult rats.
View Article and Find Full Text PDFThe survival and proliferation of the obligate intracellular malaria parasite Plasmodium falciparum require salvage of essential purines from the host. Genetic studies have previously shown that the parasite plasma membrane purine permease, PfNT1, plays an essential function in the transport of all naturally occurring purine nucleosides and nucleobases across the parasite plasma membrane. Here, we describe an intracellular permease, PfNT2.
View Article and Find Full Text PDFGlycerolipid biosynthesis in Leishmania initiates with the acylation of glycerol-3-phosphate by a single glycerol-3-phosphate acyltransferase, LmGAT, or of dihydroxyacetonephosphate by a dihydroxyacetonephosphate acyltransferase, LmDAT. We previously reported that acylation of the precursor dihydroxyacetonephosphate rather than glycerol-3-phosphate is the physiologically relevant pathway for Leishmania parasites. We demonstrated that LmDAT is important for normal growth, survival during the stationary phase, and for virulence.
View Article and Find Full Text PDFThis study assessed the potential for functional and anatomical recovery of the diseased aged primate nigrostriatal system, in response to trophic factor gene transfer. Aged rhesus monkeys received a single intracarotid infusion of MPTP, followed one week later by MRI-guided stereotaxic intrastriatal and intranigral injections of lentiviral vectors encoding for glial derived neurotrophic factor (lenti-GDNF) or beta-galactosidase (lenti-LacZ). Functional analysis revealed that the lenti-GDNF, but not lenti-LacZ treated monkeys displayed behavioral improvements that were associated with increased fluorodopa uptake in the striatum ipsilateral to lenti-GDNF treatment.
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2008
The involvement of alpha-synuclein in familial forms of Parkinson's disease suggests a potential causative role in the pathogenesis. We have explored the possibility of generating animal models of Parkinson's disease by overexpressing alpha-synuclein in the nigrostriatal pathway using viral vectors. Both lentiviral and adeno-associated vectors efficiently transduce dopaminergic neurons in the substantia nigra, and transgenic expression of alpha-synuclein leads to the progressive loss of neurons positive for dopaminergic markers, with the formation of intraneuronal alpha-synuclein aggregates.
View Article and Find Full Text PDFNeural stem cells (NSCs) are widely endorsed as a cell source for replacement strategies in neurodegenerative disease. However, their usefulness is currently limited by the inability to induce specific neurotransmitter phenotypes in these cells. In order to direct dopaminergic neuronal fate, we overexpressed Pitx3 in NSCs that were then exposed to E11 developing ventral mesencephalon (VM) in explant culture.
View Article and Find Full Text PDFCD31(+)CD45RA(+)RO(-) lymphocytes contain high numbers of T cell receptor circle (TREC)-bearing T cells; however, the correlation between CD31(+)CD4(+) lymphocytes and TREC during aging and under lymphopenic conditions has not yet been sufficiently investigated. We analyzed TREC, telomere length and telomerase activity within sorted CD31(+) and CD31(-) CD4(+) lymphocytes in healthy individuals from birth to old age. Sorted CD31(+)CD45RA(+)RO(-) naive CD4(+) lymphocytes contained high TREC numbers, whereas CD31(+)CD45RA(-)RO(+) cells (comprising < or =5% of CD4(+) cells during aging) did not contain TREC.
View Article and Find Full Text PDFHuman neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population.
View Article and Find Full Text PDFThe human malaria parasite Plasmodium falciparum relies on the acquisition of host purines for its survival within human erythrocytes. Purine salvage by the parasite requires specialized transporters at the parasite plasma membrane (PPM), but the exact mechanism of purine entry into the infected erythrocyte, and the primary purine source used by the parasite, remain unknown. Here, we report that transgenic parasites lacking the PPM transporter PfNT1 (P.
View Article and Find Full Text PDFDespite major advances in the understanding of pathogenesis of the human protozoan parasite Leishmania major, little is known about the enzymes and the primary precursors involved in the initial steps of synthesis of its major glycerolipids including those involved in virulence. We have previously demonstrated that the initial step of acylation of the precursor glycerol 3-phosphate is not essential for the synthesis of ester and ether phospholipids in this parasite. Here we show that Leishmania expresses a single acyltransferase with high specificity for the precursor dihydroxyacetone phosphate and shows the best activity in the presence of palmitoyl-CoA.
View Article and Find Full Text PDF