Publications by authors named "Zuchao Zhu"

Aiming at the requirements of strong mobility and high flexibility of rescue and relief mobile pump trucks, this paper designs a new type of mobile pump truck frame based on existing mobile vehicle frame models. The materials used for the frame are 40Cr and Q235, and the finite element method is utilized to carry out static mechanical analysis and dynamic characteristic analysis. Simultaneously utilizing topology optimization and multi-objective genetic algorithm to optimize the design of the frame structure.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrodynamic cavitation (HC) is being explored as a promising method for disinfecting water, particularly using jet pump cavitation reactors (JPCRs) under specific cavitation pressures.
  • A study using computational fluid dynamics revealed that smaller area ratios in JPCRs lead to higher likelihoods of cavitation but also limit the operational flow range.
  • The research highlighted that during cavitation, a stable layer of bubbles forms as the primary flow pushes them toward the outlet, with vortex dynamics playing a key role in this process.
View Article and Find Full Text PDF

Size-based particle filtration has become indispensable in numerous biomedical and environmental applications. In this study, bioinspired by the filter-feeding mechanism (lobe filtration) of manta rays, we designed a U-shaped biomimetic gill rake filter that combined lobe filtration and Dean flow to filter monodisperse suspensions, bi-disperse suspensions and yeast cells. Compared with other equipment using the inertial focusing technology, our equipment can perform high-throughput (up to 8 mL min) and high-efficiency filtration of particles (maximum filtration efficiencies of 96.

View Article and Find Full Text PDF

Using the unsteady Bernoulli equation for the piping system and the angular momentum equation for the rotor, derives here a theoretical model to predict the startup performance of a pump as turbine (PAT). This model is effective for predicting the instantaneous evolution characteristics of the main performance parameters of PAT during startup, and these changings are initially faster and then slowly as a whole. The effect of the rotor moment of inertia and the final stabilized rotational speed of PAT on evolution characteristics of parameters is opposite.

View Article and Find Full Text PDF

This article combines the lattice Boltzmann method (LBM) with the squirmer model to investigate the motion of micro-swimmers in a channel-cavity system. The study analyses various influential factors, including the value of the squirmer-type factor (), the swimming Reynolds number (Re), the size of the cavity, initial position and particle size on the movement of micro-swimmers within the channel-cavity system. We simultaneously studied three types of squirmer models, Puller ( > 0), Pusher ( < 0), and Neutral ( = 0) swimmers.

View Article and Find Full Text PDF

In order to improve the efficiency of the self-priming pump in the outdoor emergency rescue mobile pump truck, this paper took the key energy conversion component-impeller as the target and used the orthogonal experimental design method to optimize its hydraulic performance. Firstly the numerical calculations were compared with the experimental results to confirm the reliability of the calculation method. Then, L (3) orthogonal design was applied to investigate the influence of the impeller diameter, the blade outlet width, the blade wrap angle and the number of blades on the hydraulic performance of the self-priming pump.

View Article and Find Full Text PDF

The slag droplet entrainment is a common phenomenon in steel refining processes, which may lead to inclusions and defects. In the multiphase flow system, the distinct interface and tiny blobs possess a wide range of spatial and temporal scales and make it hard to be simulated. In numerical methods, the volume of fluid (VOF) approach is appropriate for capturing the interface, but for the unresolvable tiny blobs, the Lagrangian particle tracking (LPT) is preferable.

View Article and Find Full Text PDF

To study the effect of the width-to-narrow ratio on the forward and reverse flow characteristics of the Tesla valve, five different models of the Tesla valve with different width-to-narrow ratios are established in this paper. The numerical calculations of forward and reverse flow under different working conditions are carried out by the CFD method in the laminar flow regime, and the reliability of the numerical calculation method is verified by comparing it with the experimental results. The results show that: in forward flow, the main flow-through channel is not related to the width-to-narrow ratio, the flow rate of the straight channel increases with the increase of the width-to-narrow ratio, and the static pressure in the diversion section is in the shape of "∞"; while in reverse flow, the main flow-through channel is weakly related to the width-to-narrow ratio, the flow rate of the arc channel is not increased with the increase of the width-to-narrow ratio, and the static pressure in the diversion section is in the shape of "bench".

View Article and Find Full Text PDF

We have employed the large eddy simulation (LES) approach to investigate the cavitation noise characteristics of an unsteady cavitating flow around a NACA66 (National Advisory Committee for Aeronautics) hydrofoil by employing an Eulerian-Lagrangian based multiscale cavitation model. A volume of fluid (VOF) method simulates the large cavity, whereas a Lagrangian discrete bubble model (DBM) tracks the small bubbles. Meanwhile, noise is determined using the Ffowcs Williams-Hawkings equation (FW-H).

View Article and Find Full Text PDF

In order to reveal the influence of starting acceleration on starting process of a pump as turbine system, this paper carries out a numerical calculation of the three-dimensional viscous unsteady flow of pump as turbine circulating piping system under three starting acceleration conditions, and obtains the external and internal flow characteristics of each overflow component during the starting process, and also analyzes the energy loss of each component in the piping system in depth with the help of entropy production method and Q criterion method. The results show that during system start-up, the flow rate and outlet static pressure curves of the pump as turbine are hysteresis relative to the rotational speed, the head curve is similar to a linear rise during slow and medium speed start-up, while it shows a parabolic rise during rapid start-up, the entropy production and vorticity in the impeller domain of the pump as turbine are mainly distributed between the blades, and the distribution decreases during start-up. In addition, the pump similarity law does not apply to the performance prediction during the transient start of the pump as turbine.

View Article and Find Full Text PDF

Droplet formation and growth processes have numerous scientific and industrial applications. Experimental and numerical studies on the formation, growth, and breaking of droplet are carried out in present work. The numerical results are in good agreement with the experiment.

View Article and Find Full Text PDF

A fluid food conveying pump is used to convey edible or nutritional fluids and semi-fluids (containing suspended soft and hard particles and with different viscosities), such as water, glycerin, yogurt, and juice concentrate. Since different fluid food have different viscosities, the internal flow characteristics and conveying performance of food conveying pump are greatly affected by viscosity. To obtain the influence law of fluid food viscosity on the internal flow characteristics of the pump, the internal flow characteristics of food conveying pump when conveying food of 4 different viscosities (water, glycerin, 67.

View Article and Find Full Text PDF

Droplet impact on film is a common natural appearance in industrial production. The numerical simulation method is used to simulate the evolution process of droplet impact on different convex surfaces with liquid film to study the influence of various surface structures on the impact of droplets on the film. The mechanism of droplet impact on irregular wall is also explored.

View Article and Find Full Text PDF

In the field of food processing, the processing of liquid foods has always played an important role. Liquid foods have high requirements for the processing environment and equipment. As the core equipment in liquid foods processing, food transport pumps are widely used in liquid foods production, processing and transportation.

View Article and Find Full Text PDF

The effect of rotation on small-scale characteristics and scaling law in the mixing zone of the three-dimensional turbulent Rayleigh-Taylor instability (RTI) is investigated by the lattice Boltzmann method at small Atwood number. The mixing zone width h(t), the root mean square of small scale fluctuation, the spectra, and the structure functions are obtained to analyze the rotating effect. We mainly focus on the process of the development of plumes and discuss the physical mechanism in the mixing zone in rotating and nonrotating systems.

View Article and Find Full Text PDF

Environmental pollution as a result of urban and industrial wastewater has become an increasingly prominent issue. Rivers, lakes, and oceans that have become eutrophicated or polluted by suspended solids and hazardous substances in wastewater have endangered the environment. A root cause of this is the discharge of untreated urban and industrial wastewater into the ecosystem.

View Article and Find Full Text PDF

In this study, computational fluid dynamics (cfd) software and detached eddy simulation turbulence model were used to simulate butterfly valves with different designs. The effects of shaft diameters on the value and the fluctuation of valve disk torque were studied, and the physical reason was discussed. The simulation results were verified by comparing with the experimental data.

View Article and Find Full Text PDF

Statistics of heat transfer in two-dimensional (2D) turbulent Rayleigh-Bénard (RB) convection for Pr=6,20,100 and 106 are investigated using the lattice Boltzmann method (LBM). Our results reveal that the large scale circulation is gradually broken up into small scale structures plumes with the increase of Pr, the large scale circulation disappears with increasing Pr, and a great deal of smaller thermal plumes vertically rise and fall from the bottom to top walls. It is further indicated that vertical motion of various plumes gradually plays main role with increasing Pr.

View Article and Find Full Text PDF