Deep learning-based Human Activity Recognition (HAR) systems received a lot of interest for health monitoring and activity tracking on wearable devices. The availability of large and representative datasets is often a requirement for training accurate deep learning models. To keep private data on users' devices while utilizing them to train deep learning models on huge datasets, Federated Learning (FL) was introduced as an inherently private distributed training paradigm.
View Article and Find Full Text PDFThe concept of an intelligent pandemic response network is gaining momentum during the current novel coronavirus disease (COVID-19) era. A heterogeneous communication architecture is essential to facilitate collaborative and intelligent medical analytics in the fifth generation and beyond (B5G) networks to intelligently learn and disseminate pandemic-related information and diagnostic results. However, such a technique raises privacy issues pertaining to the health data of the patients.
View Article and Find Full Text PDFWith the exponentially growing COVID-19 (coronavirus disease 2019) pandemic, clinicians continue to seek accurate and rapid diagnosis methods in addition to virus and antibody testing modalities. Because radiographs such as X-rays and computed tomography (CT) scans are cost-effective and widely available at public health facilities, hospital emergency rooms (ERs), and even at rural clinics, they could be used for rapid detection of possible COVID-19-induced lung infections. Therefore, toward automating the COVID-19 detection, in this paper, we propose a viable and efficient deep learning-based chest radiograph classification (DL-CRC) framework to distinguish the COVID-19 cases with high accuracy from other abnormal (e.
View Article and Find Full Text PDF