Publications by authors named "Zubaida Yusoff"

In order to implement the fifth generation (5G) communication system for a large number of users, the governments of many countries nominated the low 5G frequency band between 3.3 and 4.3 GHz.

View Article and Find Full Text PDF

A 16-port massive Multiple-Input-Multiple-Output (mMIMO) antenna system featuring a high gain and efficiency is proposed for millimeter-wave applications. The antenna system consists of 64 elements with a total size of 17 λo × 2.5λo, concerning the lowest frequency.

View Article and Find Full Text PDF

Microstrip couplers play a crucial role in signal processing and transmission in various applications, including RF and wireless communication, radar systems, and satellites. In this work, a novel microstrip 180° coupler is designed, fabricated and measured. The layout configuration of this coupler is completely new and different from the previously reported Rat-race, branch-line and directional couplers.

View Article and Find Full Text PDF

In this study, we present our findings from investigating the use of a machine learning (ML) technique to improve the performance of Quasi-Yagi-Uda antennas operating in the n78 band for 5G applications. This research study investigates several techniques, such as simulation, measurement, and an RLC equivalent circuit model, to evaluate the performance of an antenna. In this investigation, the CST modelling tools are used to develop a high-gain, low-return-loss Yagi-Uda antenna for the 5G communication system.

View Article and Find Full Text PDF

Fifth generation (5G) technology aims to provide high peak data rates, increased bandwidth, and supports a 1 millisecond roundtrip latency at millimeter wave (mmWave). However, higher frequency bands in mmWave comes with challenges including poor propagation characteristics and lossy structure. The beamforming Butler matrix (BM) is an alternative design intended to overcome these limitations by controlling the phase and amplitude of the signal, which reduces the path loss and penetration losses.

View Article and Find Full Text PDF