The FecB mutation, a single-point mutation (c.A746G; p.Q249R) in bone morphogenetic protein receptor type 1 B (BMPR1B), is associated with increased ovulation quotas and litter size in sheep.
View Article and Find Full Text PDFWhole-exome sequencing (WES) is frequently utilized in diagnosing reproductive genetic disorders to identify various genetic variants. Canonical ±1,2 splice sites are typically considered highly pathogenic, while variants at the 5' or 3' ends of exon boundaries are often considered synonymous or missense variants, with their potential impact on abnormal gene splicing frequently overlooked. In this study, we identified five variants located at the last two bases of the exons and two canonical splicing variants in five distinct families affected by reproductive genetic disorders through WES.
View Article and Find Full Text PDFCoat colour largely determines the market demand for several cat breeds. The KIT proto-oncogene (KIT) gene is a key gene controlling melanoblast differentiation and melanogenesis. KIT mutations usually cause varied changes in coat colour in mammalian species.
View Article and Find Full Text PDFIntramuscular fat (IMF) plays a crucial role in enhancing meat quality, enriching meat flavor, and overall improving palatability. In this study, Single-cell RNA sequencing was employed to analyze the longissimus dorsi (LD) obtained from Guangdong small-ear spotted pigs (GDSS, with high IMF) and Yorkshire pigs (YK, with low IMF). GDSS had significantly more Fibro/Adipogenic Progenitor (FAPs), in which the CD9 negative FAPs (FAP) having adipogenic potential, as demonstrated by assays using cells originated from mouse muscle.
View Article and Find Full Text PDFBone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes.
View Article and Find Full Text PDFThe clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used to create animal models for biomedical and agricultural use owing to its low cost and easy handling. However, the occurrence of erroneous cleavage (off-targeting) may raise certain concerns for the practical application of the CRISPR-Cas9 system. In this study, we created a melanocortin 1 receptor ()-edited pig model through somatic cell nuclear transfer (SCNT) by using porcine kidney cells modified by the CRISPR-Cas9 system.
View Article and Find Full Text PDFBackground: Chinese indigenous pigs are popular with consumers for their juiciness, flavour and meat quality, but they have lower meat production. Insulin-like growth factor 2 (IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation. A single nucleotide polymorphism (SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6 (ZBED6), leading to up-regulation of IGF2 and causing major effects on muscle growth, heart size, and backfat thickness.
View Article and Find Full Text PDFKrüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell proliferation, apoptosis, and differentiation. Our previous study showed that KLF4 expression is upregulated in skeletal muscle ontogeny during embryonic development in pigs, suggesting its importance for skeletal muscle development and muscle function. We revealed here that KLF4 plays a critical role in skeletal muscle development and regeneration.
View Article and Find Full Text PDFIn Brief: The regulatory role of BMP15 on porcine ovarian follicular development still remains unclear. This study reveals that biallelic editing of BMP15 impairs SMAD signaling and inhibits granulosa cell proliferation, resulting in porcine follicular development arrest and ovarian hypoplasia.
Abstract: Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor beta (TGF-β) superfamily, which is critical for facilitating ovarian folliculogenesis in mono-ovulatory mammalian species but is not essential in polyovulatory mice.
Bone morphogenetic protein 15 (BMP15) is an X-linked gene encoding an oocyte secreted factor, which plays varied functions in the female fertility between mono-ovulatory and poly-ovulatory mammalian species. We previously found that knockout of BMP15 completely blocked porcine follicular development at preantral stages. However, the specific function of BMP15 on porcine oocytes in vitro maturation remains largely unknown.
View Article and Find Full Text PDFThe white coat color of Yorkshire pigs is caused by the dominant white allele, which has been associated with at least one copy of the 450-kb duplication encompassing the entire gene and a splice mutation (G > A) at the first base of intron 17. The splice mutation in has an adverse effect on pigmentation in mice. Therefore, removing the 450 kb duplications harboring the copy with splice mutations is expected to affect Yorkshire pig pigmentation.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome viruses (PRRSVs) pose a serious threat to the swine industry in China, which has caused great difficulties for porcine reproductive and respiratory syndrome (PRRS) immune prevention and control, due to its easily mutable and recombinant nature. In this study, two novel PRRSV strains, which were named GD-H1 and GD-F1, were isolated and fully sequenced from pig farms in Guangdong province, China. The phylogenetic analysis and recombination analysis revealed that the GD-H1 and GD-F1 were generated by the recombination of NADC30-like and NADC34-like strains which were different from the previously prevalent strain.
View Article and Find Full Text PDFQuercetin (QUE) is a component of the flavonoid family that shows various therapeutic properties, such as antioxidant effects. However, whether QUE affects porcine oocyte aging has not yet been investigated. Therefore, in this study, we applied various doses of QUE to freshly isolated porcine oocytes and found that 10 µM QUE improved the oocyte maturation rate , as reflected by the increased degree of cumulus cell expansion and first polar body extrusion.
View Article and Find Full Text PDFAcute megakaryocytic leukemia (AMKL) is a clinically heterogeneous subtype of acute myeloid leukemia characterized by unrestricted megakaryoblast proliferation and poor prognosis. Thrombopoietin receptor c-Mpl is a primary regulator of megakaryopoeisis and a potent mitogenic receptor. Aberrant c-Mpl signaling has been implicated in a myriad of myeloid proliferative disorders, some of which can lead to AMKL, however, the role of c-Mpl in AMKL progression remains largely unexplored.
View Article and Find Full Text PDFMC1R (melanocortin 1 receptor) encodes the melanocortin-1 receptor, which can activate intracellular cAMP synthesis under the stimulation of the α-melanocyte stimulating hormone (α-MSH) ligand. Increased cAMP then activates the protein kinase A (PKA) pathway, resulting in the up-regulation of the expression of the microphthalmia-associated transcription factor (MITF) which is a critical regulatory factor of melanin synthesis, and tyrosinase (TYR), the rate-limiting enzyme of melanin synthesis tyrosinase (TYR), and ultimately affects production of eumelanin and pheomelanin, and the coat color phenotype of mammalian species. Previous reports have indicated that the mutation A243T in the transmembrane domain 6 (TM6) of MC1R protein might disrupt the function of MC1R, contributing to the red phenotype in Duroc pig.
View Article and Find Full Text PDFThe melanocortin 1 receptor (MC1R), encoded by the classical extension (E) coat color locus, is expressed on the surface of melanocytes and plays a critical role in switching melanin synthesis from pheomelanin (red/yellow) to eumelanin (black/brown). Different MC1R alleles associated with various coat color patterns in pigs have been identified over the past decades. However, functional analysis of variant porcine MC1R alleles has not yet been performed.
View Article and Find Full Text PDFHigh-mobility group box 2 (HMGB2) is an abundant, chromatin-associated protein that plays an essential role in the regulation of transcription, cell proliferation, differentiation, and tumorigenesis. However, the underlying mechanism of HMGB2 in adipogenesis remains poorly known. Here, we provide evidence that HMGB2 deficiency in preadipocytes impedes adipogenesis, while overexpression of HMGB2 increases the potential for adipogenic differentiation.
View Article and Find Full Text PDFHistone lysine demethylase 4A (KDM4A) plays a crucial role in regulating cell proliferation, cell differentiation, development and tumorigenesis. However, little is known about the function of KDM4A in muscle development and regeneration. Here, we found that the conditional ablation of KDM4A in skeletal muscle caused impairment of embryonic and postnatal muscle formation.
View Article and Find Full Text PDFMyostatin (MSTN) is a member of the transforming growth factor-β (TGF-β) family, and functions as an inhibitor of muscle growth. Disrupting the inhibitory effect of MSTN on growth can provide an effective way to increase the muscle yield of livestock and poultry. The cysteine knot motif of TGF-β can stabilize the structure of MSTN protein and plays an important regulatory role in the biological function of MSTN.
View Article and Find Full Text PDFEnhancer of zeste homolog 2 (EZH2) has been extensively investigated to participate in diverse biological processes, including carcinogenesis, the cell cycle, X-chromosome inactivation, and early embryonic development. However, the functions of this protein during mammalian oocyte meiotic maturation remain largely unexplored. Here, combined with RNA-Seq, we provided evidence that EZH2 is essential for oocyte meiotic maturation in pigs.
View Article and Find Full Text PDFMol Genet Genomic Med
October 2020
Background: Fertilization failure (FF) is a complex reproductive disorder characterized by the failure of pronuclei formation during fertilization. In addition to some cases caused by iatrogenic problems and known genetic factors, there are still many unexplained aspects of FF. Here, we aimed to assess the clinical and genetic characteristics of two families experiencing primary infertility with FF.
View Article and Find Full Text PDFBone morphogenetic protein 15 (BMP15), a member of the transforming growth factor beta superfamily, plays an essential role in ovarian follicular development in mono-ovulatory mammalian species. Studies using a biallelic knockout mouse model revealed that BMP15 potentially has just a minimal impact on female fertility and ovarian follicular development in polyovulatory species. In contrast, our previous study demonstrated that in vivo knockdown of BMP15 significantly affected porcine female fertility, as evidenced by the dysplastic ovaries containing significantly decreased numbers of follicles and an increased number of abnormal follicles.
View Article and Find Full Text PDFBone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor-β (TGFB) superfamily that plays an essential role in mammalian ovary development, oocyte maturation and litter size. However, little is known regarding the expression pattern and biological function of BMP15 in male gonads. In this study we established, for the first time, a transgenic pig model with BMP15 constitutively knocked down by short hairpin (sh) RNA.
View Article and Find Full Text PDFThe dominant white phenotype in pigs is thought to be mainly due to a structural mutation in the gene, a splice mutation (G > A) at the first base in intron 17 which leads to the deletion of exon 17 in the mature mRNA. However, this hypothesis has not yet been validated by functional studies. Here, we created two mouse models, to mimic the splice mutation, and to partially mimic the duplication mutation of gene in dominant white pigs using CRISPR/Cas9 technology.
View Article and Find Full Text PDF