Carbon-encapsulated nanoscale zero-valent-iron (C@Fe) derived from plant-based extracts has been the subject of growing interest due to its environmental friendliness. However, the effects of various pyrolysis atmospheres on the structure-function connections of C@Fe are still unclear. In this study, three pyrolytic atmospheres, namely Air, N, and 5% H/Ar were selected to fabricate X-C@Fe (X represented as A, N, H) for removing 2,4,6-Trichlorophenol (TCP), and the relationships between their structures and functions were demonstrated.
View Article and Find Full Text PDFAs the world's leading producer of pigs, China is now experiencing large-scale pollution derived from agricultural usage of untreated pig manure, where passivation of metal toxicity in pig manure is a major challenge. Here, the effect of green synthesized iron nanoparticle (G-nFe) addition on copper (Cu) transformations during thermophilic aerobic composting of pig manure was investigated. The results revealed that following addition of G-nFe passivation of active Cu forms, including exchangeable (EXC-Cu), carbonate-bound (CARCu), and iron and manganese oxide-bound (IMOCu) Cu increased by 66.
View Article and Find Full Text PDFSci Total Environ
December 2024
The utilization of metal-modified biochars (MBCs) for practical phosphorus recovery has attracted significant research interest recently. However, the optimal choice of metals and modification methods for MBCs remains unclear. This study addresses this gap by comparing the phosphate adsorption capabilities of various MBCs using real municipal wastewater.
View Article and Find Full Text PDFIron nanoparticles synthesized using Euphorbia cochinchinensis leaf extracts (Ec-FeNPs) showed high selectivity for rare earth elements (REEs) recovery from mining wastewater. REEs recovery efficiencies were > 90 %, with distribution coefficients ranging from 2483.9 to 37500 mL/g, which were consistently much higher than non-REEs (15.
View Article and Find Full Text PDFThe recovery of rare earth elements (REEs) is a major issue based on environmental governance and sustainable resource utilization. In this study, we developed a novel hydrogel material (Fe/Mn@ALG) by anchoring Fe/Mn NPs on alginate spheres, where Fe/Mn NPs were in-situ synthesized using Euphorbia cochinchensi leaf extract as reduced and protection agents. The Fe/Mn@ALG was applied directly to real mine wastewater, generating efficient and selective recovery of REEs with the coexistence of numerous competing metal ions.
View Article and Find Full Text PDFGreen synthesized iron/manganese nanoparticles (Fe/Mn NPs), acted as an exogenous promoter to enhance the lignin-degrading bacteria Comamonas testosteroni FJ17 resulting in more efficient removal of bisphenol A (BPA). Batch experiments demonstrated that removal efficiency of BPA via cells at a BPA concentration of 10 mg·L increased by 20.9 % when exposed to 100 mg·L Fe/Mn NPs after 48 h (93.
View Article and Find Full Text PDFBioresour Technol
September 2024
Microbes used for the recovery of rare earth elements (REEs) from mining wastewater indicated traces of Escherichia coli (E. coli, 2149.6 μg/g), Bacillus sphaericus (1636.
View Article and Find Full Text PDFWhile nitrogen (N) deposition and over-fertilization enrich N in soil, it is unclear how it impacts soil organic carbon (SOC) transformation at the aggregate scale. Herein, a 90-day study reveals the transformation mechanisms of SOC in soil aggregates under nitrate and ammonium enrichment conditions. Results showed that nitrate treatment (NT) and ammonium treatment (AT) significantly increased SOC content by 15.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Hydrogen peroxide (HO) is a crucial eco-friendly oxidizer with increasing demand due to its wide range of applications. Activating O with catalysts to generate HO on-site offers a promising alternative to traditional production methods. Here, we design unique crystalline/amorphous heterophase Fe-Mn core-shell chains (ZVI-Mn) for efficient on-site generation of HO and manipulation of subsequent HO activation.
View Article and Find Full Text PDFThe in-situ leaching of rare earth minerals results in ecological differences between sunlit and shady slopes, which may be related to differences in the distribution REEs in the associated soil matrices. Studies of REEs mine tailings in Southern China indicated higher total concentrations of REEs on sunlit slopes compared to shady ones. Specifically, the exchangeable REEs fraction (F1-REEs) was higher on the shady slopes, whereas the Fe/Mn oxides bound REEs fraction (F3-REEs) was higher on the sunlit slopes.
View Article and Find Full Text PDFExtracting rare earth elements (REEs) from wastewater is crucial for saving the environment, sustainable use of natural resources and economic growth. Reported here is a simple, low cost and one-step synthesis of Fe nanoparticles (FeNPs) based on two plant extracts having the ability to recover REEs. The synthesis of FeNPs using Excoecaria cochinchinensis leaves extract (Ec-FeNPs) exhibited high selectivity for heavy rare earth due to unique biomolecules, achieving separation coefficients (K) of 3.
View Article and Find Full Text PDFWhile microbial technologies, which are considered to be environmentally friendly, have great potential for the recovery of rare earth elements (REEs) from mining wastewater, their applications have been restricted due to a lack of efficient biosorbents. In this study, a strain of Pseudomonas psychrotolerans isolated from yttrium-enriched mine soil was used to recover yttrium (Y(III)) from rare-earth mining wastewater. At an initial Y(III) dose of 50 mg L, the amount of Y(III) adsorbed by P.
View Article and Find Full Text PDFBiotic-abiotic hybrid systems have recently emerged as a potential technique for stable and efficient removal of persistent contaminants due to coupling of microbial catabolic with abiotic adsorption/redox processes. In this study, Burkholderia vietnamensis C09V (B.V.
View Article and Find Full Text PDFRadical-nonradical co-dominant pathways have become a hot topic in advanced oxidation, but achieving this on transition metal sulfides (TMS) remains challenging because their inherently higher electron and spin densities always induce radicals rather than nonradicals. Herein, a biosurfactant layer (BLR) was introduced to redistribute the electron and spin structure of nanoscale iron sulfide (FeS), which allowed both radical and nonradical to co-dominate the catalytic reaction. The resulting BLR-encased FeS hybrid (BLR@FeS) exhibited satisfactory removal efficiency (98.
View Article and Find Full Text PDFIn this study, a sample of 2-methylimidazole zinc salt (ZIF-8) demonstrated high selectivity for the recovery of heavy rare earth elements (REEs) from real rare earth mining wastewater. Results show that the distribution coefficient values of Y (4.02 × 10 mL·g), Gd (7.
View Article and Find Full Text PDFMining activities can potentially release high levels of Pb(II) in acid mine drainage (AMD), which thereafter poses a significant threat to ecological security. In this study, green reduced graphene oxide/silver nanoparticles (rGO/Ag NPs) were successfully synthesized via a one-step approach using a green tea extract and subsequently used as a cost-effective absorbent to remove Pb(II) from AMD. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that organic functional groups in the green tea extracts, such as C=O-C, CO, and CC, acted both as reductants and stabilizers in the synthesis of rGO/Ag NPs.
View Article and Find Full Text PDFUnderstanding the complex geochemical characteristics of rare earth elements (REEs) in the weathering profile of ion-adsorbed rare earth ore is a crucial issue for establishing the best leaching agent dosage during in-situ leaching processes. This study focuses on soil samples collected from nine drill holes located at three hillslopes of a mining area in southwest Fujian. Analyzing the geochemical features of REEs revealed that the ore predominantly comprises Y, La, Ce, and Nd, with Y being the most abundant, constituting 20.
View Article and Find Full Text PDFThere is increasing demand and interest in efficient methods for the recovery of rare earth elements (REEs) from wastewater because of the growing concerns associated with the negative impacts of REEs-rich waste discharged on pristine ecosystems. Here, we designed a ZIF-8@ALG composite hydrogel by encapsulating zeolitic imidazolate frameworks-8 (ZIF-8) into sodium alginate and poly (vinyl alcohol) double cross-linked networks (ALG) for the recovery of REEs from mine wastewater. ZIF-8@ALG showed exceptional REEs adsorption performance with the most superior separation factor (Ho/Mn) of 597.
View Article and Find Full Text PDFWhile over-fertilization and nitrogen deposition can lead to the enrichment of nitrogen in soil, its effects on heavy metal fractions under gradient moisture conditions remains unclear. Here, the effect of intensive ammonium (NH) addition on the conversion and interaction of cadmium (Cd), iron (Fe) and carbon (C) was studied. At relatively low (30-80 %) water hold capacity (WHC) NH application increased the carbonate bound Cd fraction (F2Cd), while at relatively high (80-100 %) WHC NH application increased the organic matter bound Cd fraction (F4Cd).
View Article and Find Full Text PDFGlobally extensive research into how silver nanoparticles (AgNPs) affect enzyme activity in soils with differing properties has been limited by cost-prohibitive sampling. In this study, customized machine learning (ML) was used to extract data patterns from complex research, with a hit rate of Random Forest > Multiple Imputation by Chained Equations > Decision Tree > K-Nearest Neighbors. Results showed that soil properties played a pivotal role in determining AgNPs' effect on soil enzymes, with the order being pH > organic matter (OM) > soil texture ≈ cation exchange capacity (CEC).
View Article and Find Full Text PDFFerrous sulfide nanoparticles (nFeS) have proven to be effective in removing heavy metals (HMs) from wastewater. One such approach, which has garnered much attention as a sustainable technology, is via the in situ microbial synthesis of nFeS. Here, a sulfate-reducing bacteria (SRB) strain, Geobacter sulfurreducens, was used to initially biosynthesize ferrous sulfide nanoparticles (SRB-nFeS) and thereafter remove HMs from acid mine drainage (AMD).
View Article and Find Full Text PDFJ Environ Manage
February 2024
Due to their use in a number of advanced electronic technologies, Rare earth elements (REEs) have recently emerged as a key strategic resource for many nations worldwide. The significant increase in demand for REEs has thus greatly increased the mining of these substances, but this industrial-scale expansion of mining activities also poses potential risks to the surrounding environment, flora, fauna, and humans. Hence efficient REE remediation is one potential remediation process involving in situ clean-up of contaminated soil which has gained much attention in recent years, due to its low cost and lack of secondary pollution.
View Article and Find Full Text PDFReduced graphene oxide/iron nanoparticles (rGO/FeNPs) synthesized by the chemical method have been used in Fenton oxidation of organic contaminants, yet little is known about biosynthesized rGO/FeNPs using green tea extract (GT) as how to activate persulfate in sulfate radical-based advanced oxidation processes. In this study, rGO/FeNPs were used to activate peroxydisulfate (PDS) for 17β-estradiol (βE) and estriol (E) removal. The rGO/FeNPs-PDS system removed 83.
View Article and Find Full Text PDF