Understanding the sediment release and plant bioaccumulation of per- and polyfluoroalkyl substances (PFASs) under submerge-emerge alternation (SE) is crucial to predicting their transport and fate in the riparian zones. In the present study, a simulational device was firstly constructed to explore the effects of SE on the transport of PFASs in riparian sediment-plant systems and the underlying mechanisms. The submerge (CS) and emerge (CE) situations were compared.
View Article and Find Full Text PDFThe stabilization of rhizobacteria communities plays a crucial role in sustaining healthy macrophyte growth. In light of increasing evidence of combined pollution from microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs), Selecting typical floating macrophyte as a case, this study explored their impacts using hydroponic simulations and 16S rRNA high-throughput sequencing. A total of 31 phyla, 77 classes, 172 orders, 237 families, 332 genera, and 125 rhizobacteria species were identified.
View Article and Find Full Text PDFCo-contamination with MPs and PFASs has been recorded, particularly in surface-water environments. Floating macrophyte microcosms are an important part of the surface water ecosystem, and dissolved organic matter (DOM) driven by floating macrophytes (FMDDOM) is critical for maintaining material circulation. However, knowledge gaps remain regarding the impact of MPs and PFASs co-pollution on FMDDOM.
View Article and Find Full Text PDFSci Total Environ
November 2024
Rivers are undergoing significant changes under the pressures of natural processes and human activities. However, characterizing and understanding these changes over the long term and from a spatial perspective have proven challenging. This paper presents a novel framework featuring twelve indicators that combine geometric and spatial structures for evaluating changes in river network patterns.
View Article and Find Full Text PDFGen X and F-53B have been popularized as alternatives to PFOA and PFOS, respectively. These per(poly)fluoroalkyl substances pervasively coexist with microplastics (MPs) in aquatic environments. However, there are knowledge gaps regarding their potential eco-environmental risks.
View Article and Find Full Text PDFShort-chained perfluoroalkyl acids (PFAAs, CF-R, n ≤ 6) have merged as global concerns due to their extensive application and considerable toxicity. However, long-chained PFAAs (n ≥ 7) featured with high persistence are still ubiquitously observed in aquatic environment. To understand the uptake behavior of short-chained PFAAs in aquatic macrophytes, the uptake kinetics, bioconcentration, and translocation of short-chained PFAAs (3 ≤n ≤ 6) in two typical free-floating macrophytes (Eichhornia crassipes and Ceratophyllum demersum) were investigated in the treatments with and without long-chained PFAAs (7 ≤n ≤ 11).
View Article and Find Full Text PDFUnderstanding the mechanisms underlying perfluoroalkyl acids (PFAAs) translocation, distribution, and accumulation in wheat-soil ecosystems is essential for agricultural soil pollution control and crop ecological risk assessment. This study systematically investigated the translocation of 13 PFAAs under different iron and nitrogen fertilization conditions in a wheat-soil ecosystem. Short-chain PFAAs including PFBA, PFPeA, PFHxA, and PFBS mostly accumulated in soil solution (10.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2023
Artificial sweeteners have sparked a heated debate worldwide due to their ambiguous impacts on public and environmental health and food safety and quality. Many studies on artificial sweeteners have been conducted; however, none scientometric studies exist in the field. This study aimed to elaborate on the knowledge creation and development of the field of artificial sweeteners and predict the frontiers of knowledge based on bibliometrics.
View Article and Find Full Text PDFInner coastal wetland ecosystems are generally eutrophic and are often exposed to both salinity stress and Escherichia coli pollution. However, the effects of these stressors on nutrient-cycling and microbial communities are under-researched. Here, we established a vegetated wetland ecosystem in a saline environment to understand the effects of E.
View Article and Find Full Text PDFPer-fluoroalkyl substances (PFASs) have been widely detected in farmland soils and are understood to pose toxicological threats to soil microbiomes and crop safety. Meanwhile, farmland ecosystems have experienced increasing nitrogen loading caused by soil fertilization. Yet it is still unclear how nitrogen additions affect soil's microbial responses to PFASs.
View Article and Find Full Text PDFPer-fluoroalkyl substances (PFASs) have become ubiquitous in farmland ecosystems and pose risks to agricultural safety, and iron is often applied to farmland soils to reduce the availability of pollutants. However, the effects of iron amendment on the availability of PFASs in the soil and on the soil microbiome are not well understood. Here, we investigated the responses of wheat soil containing PFASs to iron addition using a 21-day experiment.
View Article and Find Full Text PDFThe present study investigated the temporal and spatial distributions, partition behaviors, sources, and risks of 14 perfluoroalkyl acids (PFAAs) in the aquatic environment of a fluorine industry-impacted region. The total concentrations of 14 PFAAs (ΣPFAAs) were 118.10-2235.
View Article and Find Full Text PDFThe presence of Per-, Poly-fluoroalkyl substances (PFASs) in aquatic ecosystems has drawn broad concerns in the scientific community due to their biological toxicity. However, little has been explored regarding PFASs' removal in phytoplankton-dominated environments. This study aimed to create a simulated bacteria-algae symbiotic ecosystem to observe the potential transportation of PFASs.
View Article and Find Full Text PDFMicrobiomes are vital in promoting nutrient cycling and plant growth in soil ecosystems. However, microbiomes face adverse effects from multiple persistent pollutants, including per- and poly-fluoroalkyl substances (PFASs). PFASs threaten the fertility and health of soil ecosystems, yet the response of microbial community stability and trophic transfer efficiencies to PFASs is still poorly understood.
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) are emerging contaminants that pose significant environmental and health concerns. Water-sediment-macrophyte residue systems were established to clarify the removal efficiency of PFAAs, explore possible removal pathways, and profile the dynamic succession of biofilm microbial communities in the decomposition process. These systems were fortified with 12 PFAAs at three concentration levels.
View Article and Find Full Text PDFUnderstanding the interactions between dissolved organic matter (DOM) and perfluoroalkyl acids (PFAAs) is essential for predicting the distribution, transport, and fate of PFAAs in aquatic environments. Based on field investigations in the northwest of Taihu Lake Basin combined with laboratory experiments, we obtained DOM and PFAA concentrations as well as compositions and investigated key factors of DOM affecting PFAA variability and capture of PFAAs by DOM. Results indicated that the total concentrations of PFAAs were 73.
View Article and Find Full Text PDFThe importance of per-, poly-fluoroalkyl substances (PFASs) effects on riverine microbiomes is receiving increased recognition in the environmental sciences. However, few studies have explored how PFASs affect microbiomes across trophic levels, specifically through predator-prey interactions. This study examined the community profiles of planktonic archaea, bacteria, fungi, algae, protozoa, and metazoa in a semi-industrial and agricultural river alongside their interactions with 15 detected PFASs.
View Article and Find Full Text PDFThe ubiquitous existence of perfluoroalkyl acids (PFAAs) in aquatic environments might pose toxic potential to ecosystems. To assess the ecotoxicological responses and removal of submerged macrophyte to multiple PFAA pollutants in aquatic environments, a typical submerged macrophyte, Hydrilla verticillate, was exposed to solutions with 12 typical PFAAs in the present study. The results showed that PFAAs at concentrations higher than 10 μg/L had significantly passive effects on biomass, relative growth rates, chlorophyll contents, and chlorophyll autofluorescence.
View Article and Find Full Text PDFThe exploration of the distribution and dietetic-related health risks of perfluoroalkyl acids (PFAAs) in industrial-agricultural interaction regions (IAIRs) is of significant importance, due to the transfer of many PFAA-related factories to developing countries with intensive agricultural activities. In the present study, based on the local diet, edible parts of rice, vegetables, fish, and their corresponding soils and irrigation/aquaculture water were investigated in a typical Chinese city (Changshu). The concentrations of total perfluoroalkyl acids (ΣPFAAs) in the edible parts of rice /vegetables and fish tissues ranged from 26.
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) have emerged as a global concern in aquatic environment remediation due to their abundance, persistence, bioaccumulation, and toxicity. To comprehensively understand the removal potential of multiple PFAAs by submerged macrophytes in aquatic environments, systematic investigations into the tolerance of the typical submerged macrophyte Vallisneria natans to 12 typical PFAAs and the removal capacity to PFAAs in V. natans-microbiota systems were carried out.
View Article and Find Full Text PDFPerfluorinated compounds (PFCs) pose serious threats to aquatic ecosystems, especially their microbial communities. However, little is known about the phylosymbiosis of aquatic fungal and viridiplantae communities in response to PFC accumulation. We quantified the distribution of 14 PFCs in rivers and found that PFBA was dominant in the transition from water to sediment.
View Article and Find Full Text PDFPer-, Poly-fluoroalkyl substances (PFASs) accumulation in benthic environments is mainly determined by material mixing and represents a significant challenge to river remediation. However, less attention has been paid to the effects of sediment distribution on PFASs accumulation, and how PFASs influence microbial community coalescence and biogeochemical processes. In order to identify correlations between PFASs distribution and benthic microbial community functions, we conducted a field study and quantified the ecological constrains of material transportation on benthic microorganisms.
View Article and Find Full Text PDFThe presence of perfluorinated compound (PFC) contamination in riverine ecosystems represents a novel challenge for environmental remediation. However, little attention has been paid to how PFCs affect planktonic microbial community coalescence. Here, the spatial profiles of fourteen PFCs and their contributions to community assembly were determined using field sampling in a natural river confluence.
View Article and Find Full Text PDFThe broad application of perfluoroalkyl acids (PFAAs) has attracted global concern regarding their adverse environmental effects. The possible removal processes of PFAAs in constructed wetlands were excavated and quantified using two typical submerged macrophytes (rooted Potamogeton wrightii and rootless Ceratophyllum demersum). Our results showed that 33.
View Article and Find Full Text PDF