Publications by authors named "Zu-cheng Wu"

This work demonstrates the use of a NiCu electrocatalyst prepared by hydrothermal method with different Ni/Cu mass ratios (70:30, 50:50 and 30:70) supported on carbon nanotubes (CNTs), which was studied with regards to its electrochemical behavior in the ammonia oxidation reaction and direct ammonia microfluidic fuel cell (DAMFC) performance. XRD and SEM-EDX showed the formation of NiCu alloy while TEM showed the particles size to be 15-20 nm. Cyclic voltammetry and chronoamperometry showed that NiCu had higher catalytic activity than pure Ni and pure Cu, and that the active species was a NiCu oxyhydroxide.

View Article and Find Full Text PDF

The recovery of heavy metals from aqueous solutions or e-wastes is of upmost importance. Retrieval of Au, Ag, and Cu with electricity generation through building an ethanol-metal coupled redox fuel cells (CRFCs) is demonstrated. The cell was uniquely assembled on PdNi/C anode the electro-oxidation of ethanol takes place to give electrons and then go through the external circuit reducing metal ions to metallic on the cathode, metals are recovered.

View Article and Find Full Text PDF

Energy extraction from waste has attracted much interest nowadays. Herein, a coupled redox fuel cell (CRFC) device using heavy metals, such as copper, as an electron acceptor is assembled to testify the recoveries of both electricity and the precious metal without energy consumption. In this study, a NaBH4-Cu(II) CRFC was employed as an example to retrieve copper from a dilute solution with self-electricity production.

View Article and Find Full Text PDF

Fereducer reaction is introduced to enhance DC corona radicals shower for removal of benzene in air. In the presence of nozzle electrode gas containing Fereducer reagent, the enhanced decomposing efficiencies were 21% and 4.2% for benzene concentration of 953 mg/m3 and 63 mg/m3, respectively.

View Article and Find Full Text PDF

Attempts were made to culture Spirulina platensis in human urine directly to achieve biomass production and O(2) evolution, for potential application to nutrient regeneration and air revitalization in life support system. The culture results showed that Spirulina platensis grows successfully in diluted human urine, and yields maximal biomass at urine dilution ratios of 140 approximately 240. Accumulation of lipid and decreasing of protein occurred due to N deficiency.

View Article and Find Full Text PDF

Using an air-H2O DC corona radical shower system, the influences of reside time of flue gas in the reactor, velocity of flue gas and NO concentration on NO oxidation process were studied. The results show that the increasing velocity of flue gas can restrain corona development and the increasing NO concentration can make discharge more easy. The reside time of flue gas in the reactor has less effect on the NO oxidation.

View Article and Find Full Text PDF

Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency).

View Article and Find Full Text PDF

A new configuration integrated ion exchange effect system with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchange resins without additive chemicals. By simply assembling cation exchange resins and anion exchange resins separated by homogeneous membranes, we found that the system will always be acidic in the concentrate compartment so that ion exchange resins could be in-situ regenerated without hydroxide precipitation. Such a realizable design will be really suitable for wastewater purification.

View Article and Find Full Text PDF

A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate of chlorophenol could be increased 149% when oxygen was induced in the electrochemical cell.

View Article and Find Full Text PDF