MC1R (melanocortin 1 receptor) encodes the melanocortin-1 receptor, which can activate intracellular cAMP synthesis under the stimulation of the α-melanocyte stimulating hormone (α-MSH) ligand. Increased cAMP then activates the protein kinase A (PKA) pathway, resulting in the up-regulation of the expression of the microphthalmia-associated transcription factor (MITF) which is a critical regulatory factor of melanin synthesis, and tyrosinase (TYR), the rate-limiting enzyme of melanin synthesis tyrosinase (TYR), and ultimately affects production of eumelanin and pheomelanin, and the coat color phenotype of mammalian species. Previous reports have indicated that the mutation A243T in the transmembrane domain 6 (TM6) of MC1R protein might disrupt the function of MC1R, contributing to the red phenotype in Duroc pig.
View Article and Find Full Text PDFMyostatin (MSTN) is a member of the transforming growth factor-β (TGF-β) family, and functions as an inhibitor of muscle growth. Disrupting the inhibitory effect of MSTN on growth can provide an effective way to increase the muscle yield of livestock and poultry. The cysteine knot motif of TGF-β can stabilize the structure of MSTN protein and plays an important regulatory role in the biological function of MSTN.
View Article and Find Full Text PDFMutations in Hypoxanthine-guanine Phosphoribosyltransferase1 (HPRT1) gene can lead to metabolic disorder of hypoxanthine and guanine metabolism, and other severe symptoms such as hypophrenia, gout, and kidney stones, called the Lesch-Nyhan disease (LND). Although the mutations are widely distributed throughout the HPRT1 gene, there are some isolated hot spots. In this study, we aim to introduce two previously reported hot spots, c.
View Article and Find Full Text PDFAs Chinese have raised most pigs and consumed most pig products in the world, improving the fertility of sow is of economic benefits to the pig industry in China. The sheep BMP15 (bone morphogenetic protein 15) gene has been identified as a major gene for controlling ovulation rates and prolific traits, which are key factors affecting the fertility of livestock. As similar natural occurring mutations in the porcine BMP15 gene have not yet been reported, we speculated that introducing the same prolific sheep mutations into the porcine BMP15 gene by using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system.
View Article and Find Full Text PDF