Publications by authors named "Zu-Po Yang"

Invited for the cover of this issue are Chin-Wei Lu, Zu-Po Yang, Hai-Ching Su, and co-workers at National Yang Ming Chiao Tung University and Providence University. The image depicts electron transport for light-emitting electrochemical cells. Read the full text of the article at 10.

View Article and Find Full Text PDF

Recently, perovskites have attracted intense attention due to their high potential in optoelectronic applications. Employing perovskites as the emissive materials of light-emitting electrochemical cells (LECs) shows the advantages of simple fabrication process, low-voltage operation, and compatibility with inert electrodes, along with saturated electroluminescence (EL) emission. Unlike in previously reported perovskite LECs, in which salts are incorporated in the emissive layer, the ion-transport layer was separated from the emissive layer in this work.

View Article and Find Full Text PDF

Solid-state white light-emitting electrochemical cells (LECs) show promising advantages of simple solution fabrication processes, low operation voltage, and compatibility with air-stable cathode metals, which are required for lighting applications. To date, white LECs based on ionic transition metal complexes (iTMCs) have shown higher device efficiencies than white LECs employing other types of materials. However, lower emission efficiencies of red iTMCs limit further improvement in device performance.

View Article and Find Full Text PDF
Article Synopsis
  • Titanium nitride (TiN) has become a promising material for plasmonics, but traditional high-temperature deposition methods limit its use in existing technologies.
  • Researchers developed a room-temperature, low-power sputtering technique to create highly plasmonic TiN films and nanostructures.
  • The study found that these TiN films exhibited strong optical properties, enabling the creation of complex nanostructures that could be integrated into CMOS photonic devices for improved performance.
View Article and Find Full Text PDF

Solid-state near-infrared (NIR) light-emitting devices have recently received considerable attention as NIR light sources that can penetrate deep into human tissue and are suitable for bioimaging and labeling. In addition, solid-state NIR light-emitting electrochemical cells (LECs) have shown several promising advantages over NIR organic light-emitting devices (OLEDs). However, among the reported NIR LECs based on ionic transition-metal complexes (iTMCs), there is currently no iridium-based LEC that displays NIR electroluminescence (EL) peaks near to or above 800 nm.

View Article and Find Full Text PDF

The application of random lasers has been restricted due to the absence of a well-defined resonant cavity, as the lasing action mainly depends on multiple light scattering induced by intrinsic disorders of the laser medium to establish the required optical feedback that hence increases the difficulty in efficiently tuning and modulating random lasing emissions. This study investigated whether the transport mean free path of emitted photons within disordered scatterers composed of ZnO nanowires is tunable by a curvature bending applied to the flexible polyethylene terephthalate (PET) substrate underneath, thereby creating a unique light source that can be operated above and below the lasing threshold for desirable spectral emissions. For the first time, the developed curvature-tunable random laser is implemented for in vivo biological imaging with much lower speckle noise compared to the non-lasing situation through simple mechanical bending, which is of great potential for studying the fast-moving physiological phenomenon such as blood flow patterns in mouse ear skin.

View Article and Find Full Text PDF

In this study, we experimentally demonstrated a flexible random laser fabricated on a polyethylene terephthalate (PET) substrate with a high degree of tunability in lasing emissions. Random lasing oscillation arises mainly from the resonance coupling between the emitted photons of gain medium (Rhodamine 6G, R6G) and the localized surface plasmon (LSP) of silver nanoprisms (Ag NPRs), which increases the effective cross-section for multiple light scattering, thus stimulating the lasing emissions. More importantly, it was found that the random lasing wavelength is blue-shifted monolithically with the increase in bending strains exerted on the PET substrate, and a maximum shift of ∼15 nm was achieved in the lasing wavelength, when a 50% bending strain was exerted on the PET substrate.

View Article and Find Full Text PDF

The development of white-light-emitting electrochemical cells (LECs) has attracted great attention owing to their numerous advantages. Recently, perovskite materials have also shown many outstanding optoelectronic properties in light absorption and emission, and hence they are suitable for serving as the color conversion layers (CCLs) in solid-state white-light-emitting diodes (LEDs). Here, white LECs were fabricated by integrating non-doped blue-green LECs with CCLs made of a single composition of perovskite nanocrystal (NCs).

View Article and Find Full Text PDF

We present some comments to the paper "Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors: comment," [Opt. Express22, A1589 (2014)].

View Article and Find Full Text PDF

We propose a design for speckle reduction in a laser pico-projector adopting diffusers and deformable mirrors. This research focuses on speckle noise suppression by changing the angle of divergence of the diffuser. Moreover, the speckle contrast value can be further reduced by the addition of a deformable mirror.

View Article and Find Full Text PDF

Recently, the control of correlated color temperature (CCT) of artificial solid-state white-light sources starts to attract more attention since CTs affect human physiology and health profoundly. In this work, we proposed and demonstrated a method that can widely tune the CCTs of electroluminescence (EL) from white-light-emitting electrochemical cells (LECs) by employing plasmonic filters. These integrated on-chip plasmonic filters are composed of semicontinuous thin Ag film or Ag nanoparticles (NPs) both included in the indium tin oxide anode contact, which have different characteristics of plasmonic resonant absorptions that can tune the EL spectra of white LECs.

View Article and Find Full Text PDF

Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents.

View Article and Find Full Text PDF

ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.

View Article and Find Full Text PDF

In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa.

View Article and Find Full Text PDF

We experimentally demonstrate a nearly wavelength-independent optical reflection from an extremely rough carbon nanotube sample. The sample is made of a vertically aligned nanotube array, is a super dark material, and exhibits a near-perfect blackbody emission at T=450 K-600 K. No other material exhibits such optical properties, i.

View Article and Find Full Text PDF

We report the design and implementation of a new class of plasmonic filters that are both wavelength and polarization selective. The plasmonic filter consists of a five-layer metallic photonic crystal structure and operates inside the photonic bandgap regime. We show that by manipulating the middle layer geometry alone, it is possible to tune the Fabry-Perot resonance over a broad spectral range (lambda=1.

View Article and Find Full Text PDF

A metallic two-dimensional hole-array (2DHA) sample is successfully fabricated and its transmission property measured at mid-infrared wavelengths (lambda ~ 1.5-20 microm). At the plasmonic resonance, the 2DHA sample exhibits a normal incidence transmittance of 80% at lambda = 7.

View Article and Find Full Text PDF

An ideal black material absorbs light perfectly at all angles and over all wavelengths. Here, we show that low-density vertically aligned carbon nanotube arrays can be engineered to have an extremely low index of refraction, as predicted recently by theory [Garcia-Vidal, F. J.

View Article and Find Full Text PDF

We report experimental realization of a 5-layer three-dimensional (3D) metallic photonic crystal structure that exhibits characteristics of a 3D complete bandgap extending from near-infrared down to visible wavelength at around 650 nm. The structure also exhibits a new kind of non-localized passband mode in the infrared far beyond its metallic waveguide cutoff. This new passband mode is drastically different from the well-known defect mode due to point or line defects.

View Article and Find Full Text PDF