The subcellular localization of long non-coding RNAs (lncRNAs) is crucial for understanding the function of lncRNAs. Since the traditional biological experimental methods are time-consuming and some existing computational methods rely on high computing power, we are committed to finding a simple and easy-to-implement method to achieve more efficient prediction of the subcellular localization of lncRNAs. In this work, we proposed a model based on multi-source features and two-stage voting strategy for predicting the subcellular localization of lncRNAs (MVSLLnc).
View Article and Find Full Text PDFThere is increasing evidence that the subcellular localization of long noncoding RNAs (lncRNAs) can provide valuable insights into their biological functions. In terms of transcriptomes, lncRNAs were usually found in multiple subcellular localizations. Although several computational methods have been developed to predict the subcellular localization of lncRNAs, few of them were designed for lncRNAs that have multiple subcellular localizations.
View Article and Find Full Text PDFTraditional alignment-based methods meet serious challenges in genome sequence comparison and phylogeny reconstruction due to their high computational complexity. Here, we propose a new alignment-free method to analyze the phylogenetic relationships (classification) among species. In our method, the dynamical language (DL) model and the chaos game representation (CGR) method are used to characterize the frequency information and the context information of -mers in a sequence, respectively.
View Article and Find Full Text PDFThe significance of accurate long-term forecasting of air quality for a long-term policy decision for controlling air pollution and for evaluating its impacts on human health has attracted greater attention recently. This paper proposes an ensemble multi-scale framework to refine the previous version with ensemble empirical mode decomposition (EMD) and nonstationary oscillation resampling (NSOR) for long-term forecasting. Within the proposed ensemble multi-scale framework, we on one hand apply modified EMD to produce more regular and stable EMD components, allowing the long-range oscillation characteristics of the original time series to be better captured.
View Article and Find Full Text PDFRecent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process.
View Article and Find Full Text PDFIntroduction: Substantial links between autoimmune diseases have been shown by an increasing number of studies, and one hypothesis for this comorbidity is that there is a common genetic cause.
Methods: In this paper, a large-scale cross-trait Genome-wide Association Studies (GWAS) was conducted to investigate the genetic overlap among rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and type 1 diabetes.
Results And Discussion: Through the local genetic correlation analysis, 2 regions with locally significant genetic associations between rheumatoid arthritis and multiple sclerosis, and 4 regions with locally significant genetic associations between rheumatoid arthritis and type 1 diabetes were discovered.
Front Cell Infect Microbiol
February 2023
Introduction: The species diversity of microbiomes is a cutting-edge concept in metagenomic research. In this study, we propose a multifractal analysis for metagenomic research.
Method And Results: Firstly, we visualized the chaotic game representation (CGR) of simulated metagenomes and real metagenomes.
Identification and classification of enhancers are highly significant because they play crucial roles in controlling gene transcription. Recently, several deep learning-based methods for identifying enhancers and their strengths have been developed. However, existing methods are usually limited because they use only local or only global features.
View Article and Find Full Text PDFN4-Acetylcytidine (ac4C) is a highly conserved post-transcriptional and an extensively existing RNA modification, playing versatile roles in the cellular processes. Due to the limitation of techniques and knowledge, large-scale identification of ac4C is still a challenging task. RNA sequences are like sentences containing semantics in the natural language.
View Article and Find Full Text PDFKnowledge about protein-protein interactions is beneficial in understanding cellular mechanisms. Protein-protein interactions are usually determined according to their protein-protein interaction sites. Due to the limitations of current techniques, it is still a challenging task to detect protein-protein interaction sites.
View Article and Find Full Text PDFAbnormal miRNA functions are widely involved in many diseases recorded in the database of experimentally supported human miRNA-disease associations (HMDD). Some of the associations are complicated: There can be up to five heterogeneous association types of miRNA with the same disease, including genetics type, epigenetics type, circulating miRNAs type, miRNA tissue expression type and miRNA-target interaction type. When one type of association is known for an miRNA-disease pair, it is important to predict any other types of the association for a better understanding of the disease mechanism.
View Article and Find Full Text PDFLysine succinylation is a typical protein post-translational modification and plays a crucial role of regulation in the cellular process. Identifying succinylation sites is fundamental to explore its functions. Although many computational methods were developed to deal with this challenge, few considered semantic relationship between residues.
View Article and Find Full Text PDFAmong various algorithms of multifractal analysis (MFA) for complex networks, the sandbox MFA algorithm behaves with the best computational efficiency. However, the existing sandbox algorithm is still computationally expensive for MFA of large-scale networks with tens of millions of nodes. It is also not clear whether MFA results can be improved by a largely increased size of a theoretical network.
View Article and Find Full Text PDFEnviron Pollut
February 2021
Air quality forecasting for Hong Kong is a challenge. Even taking the advantages of auto-regressive integrated moving average and some state-of-the-art numerical models, a recently-developed hybrid method for one-day (two- and three-day) ahead forecasting performs similarly to (slightly better than) a simple persistence forecasting. Long-term forecasting also remains an important issue, especially for policy decision for better control of air pollution and for evaluation of the long-term impacts on public health.
View Article and Find Full Text PDFIn this study, we focus on the fractal property of recurrence networks constructed from the two-dimensional fractional Brownian motion (2D fBm), i.e., the inter-system recurrence network, the joint recurrence network, the cross-joint recurrence network, and the multidimensional recurrence network, which are the variants of classic recurrence networks extended for multiple time series.
View Article and Find Full Text PDFA novel general randomized method is proposed to investigate multifractal properties of long time series. Based on multifractal temporally weighted detrended fluctuation analysis (MFTWDFA), we obtain randomized multifractal temporally weighted detrended fluctuation analysis (RMFTWDFA). The innovation of this algorithm is applying a random idea in the process of dividing multiple intervals to find the local trend.
View Article and Find Full Text PDFButyrylation plays a crucial role in the cellular processes. Due to limit of techniques, it is a challenging task to identify histone butyrylation sites on a large scale. To fill the gap, we propose an approach based on information entropy and machine learning for computationally identifying histone butyrylation sites.
View Article and Find Full Text PDFFractal and multifractal properties of various systems have been studied extensively. In this paper, first, the multivariate multifractal detrend cross-correlation analysis (MMXDFA) is proposed to investigate the multifractal features in multivariate time series. MMXDFA may produce oscillations in the fluctuation function and spurious cross correlations.
View Article and Find Full Text PDFMore and more research works have indicated that microRNAs (miRNAs) play indispensable roles in exploring the pathogenesis of diseases. Detecting miRNA-disease associations by experimental techniques in biology is expensive and time-consuming. Hence, it is important to propose reliable and accurate computational methods to exploring potential miRNAs related diseases.
View Article and Find Full Text PDFA new method-multifractal temporally weighted detrended cross-correlation analysis (MF-TWXDFA)-is proposed to investigate multifractal cross-correlations in this paper. This new method is based on multifractal temporally weighted detrended fluctuation analysis and multifractal cross-correlation analysis (MFCCA). An innovation of the method is applying geographically weighted regression to estimate local trends in the nonstationary time series.
View Article and Find Full Text PDFSummary: A number of alignment-free methods have been proposed for phylogeny reconstruction over the past two decades. But there are some long-standing challenges in these methods, including requirement of huge computer memory and CPU time, and existence of duplicate computations. In this article, we address these challenges with the idea of compressed vector, fingerprint and scalable memory management.
View Article and Find Full Text PDFBipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models.
View Article and Find Full Text PDFLocating influential nodes in temporal networks has attracted a lot of attention as data driven and diverse applications. Classic works either looked at analysing static networks or placed too much emphasis on the topological information but rarely highlighted the dynamics. In this paper, we take account the network dynamics and extend the concept of Dynamic-Sensitive centrality to temporal network.
View Article and Find Full Text PDF