Postoperative cognitive dysfunction (POCD) is a common complication with no effective treatment in elderly patients. POCD, Alzheimer disease (AD), and many other cognitive diseases mostly involve neurotoxic microglia response, and recently, β2-microglobulin (B2M) has been suggested to play a pivotal role. A novel pyromeconic acid-styrene hybrid compound D30 was synthesized by our team and shown to be safe and effective in some neurodegenerative mouse models.
View Article and Find Full Text PDFBackground: Subarachnoid hemorrhage (SAH) causes significant long-term neurocognitive dysfunction, which is associated with hippocampal neuroinflammation. Growing evidences have shown that astrocytes played a significant role in mediating neuroinflammation. Recently, in vivo reprogramming of astrocytes to neurons by NeuroD1 or PTBP1 administration has generated a lot of interests and controversies.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2023
Neuropathic pain (NP) is a chronic disease caused by damage to the peripheral or central nervous system. Connexin 43 (Cx43), the primary connexin expressed by astrocytes, has been reported to be significantly increased in NP. However, the roles and mechanisms of Cx43 in the development and maintenance of NP remain largely unknown, while microglia activation has been commonly regarded as a key factor of NP.
View Article and Find Full Text PDFBackground And Purpose: Enhancing phagocytosis can facilitate the removal of inflammatory molecules, limit the toxicity of dead cells and debris, and promote recovery after brain injury. In this study, we aimed to explore the role of bexarotene (Bex), a retinoid X receptor (RXR) agonist, in promoting astrocyte phagocytosis and neurobehavioral recovery after subarachnoid hemorrhage (SAH).
Methods: Mice SAH model was induced by pre-chiasmatic injection of blood.
Background: Failure of glioblastoma (GBM) therapy is often ascribed to different types of glioblastoma stem-like cell (GSLC) niche; in particular, a hypoxic perivascular niche (HPVN) is involved in GBM progression. However, the cells responsible for HPVNs remain unclear.
Methods: Immunostaining was performed to determine the cells involved in HPVNs.
Oxidative stress plays an important role in the progression of Alzheimer's disease (AD) and other neurodegenerative conditions. Glutathione (GSH), the major antioxidant in the central nervous system, is primarily synthesized and released by astrocytes. We determined if β-amyloid (Aβ42), crucially involved in Alzheimer's disease, affected GSH release.
View Article and Find Full Text PDFGliosarcoma cell line K308 was established from a primary tumor specimen removed from a 51-year-old male Han Chinese patient. Besides the typical characteristics of gliosarcoma cells, K308 cells express abundant glutaminase and can release large amount of glutamate. K308 exhibited cell-density-dependent expression of neuronal precursor markers, particularly nestin.
View Article and Find Full Text PDFAstrocytes and neurons express several large pore (hemi)channels that may open in response to various stimuli, allowing fluorescent dyes, ions, and cytoplasmic molecules such as ATP and glutamate to permeate. Several of these large pore (hemi)channels have similar characteristics with regard to activation, permeability, and inhibitor sensitivity. Consequently, their behaviors and roles in astrocytic and neuronal (patho)physiology remain undefined.
View Article and Find Full Text PDFGlioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function.
View Article and Find Full Text PDFObjective: Hypoglycemia is a common adverse event and can injure central nervous system (CNS) white matter (WM). We determined whether glutamate receptors were involved in hypoglycemic WM injury.
Methods: Mouse optic nerves (MON), CNS WM tracts, were maintained at 37°C with oxygenated artificial cerebrospinal fluid (ACSF) containing 10mM glucose.
Parkinson disease (PD) typically affects the cortical regions during the later stages of disease, with neuronal loss, gliosis, and formation of diffuse cortical Lewy bodies in a significant portion of patients with dementia. To identify novel proteins involved in PD progression, we prepared synaptosomal fractions from the frontal cortices of pathologically verified PD patients at different stages along with age-matched controls. Protein expression profiles were compared using a robust quantitative proteomic technique.
View Article and Find Full Text PDFThe study of ion channels has relied heavily on the use of pharmacological blocking agents. However, many of these agents have multiple effects, which may compromise interpretation of results when the affected mechanisms/pathways mediate similar functions. Volume regulated anion channels (VRAC) and connexin hemichannels can both mediate the release of glutamate and taurine, although these channels have distinct activation stimuli and hemichannels, but not VRAC, are permeable to Lucifer Yellow (LY).
View Article and Find Full Text PDFStroke incidence increases with age and this has been attributed to vascular factors. We show here that CNS white matter (WM) is intrinsically more vulnerable to ischemic injury in older animals and that the mechanisms of WM injury change as a function of age. The mouse optic nerve was used to study WM function.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2007
Axonal injury and dysfunction in white matter (WM) are caused by many neurologic diseases including ischemia. We characterized ischemic injury and the role of glutamate-mediated excitotoxicity in a purely myelinated WM tract, the mouse optic nerve (MON). For the first time, excitotoxic WM injury was directly correlated with glutamate release.
View Article and Find Full Text PDF"Hemichannels" are defined as the halves of gap junction channels (also termed connexons) that are contributed by one cell; "hemichannels" are considered to be functional if they are open in nonjunctional membranes in the absence of pairing with partners from adjacent cells. Several recent reviews have summarized the blossoming literature regarding functional "hemichannels", in some cases encyclopedically. However, most of these previous reviews have been written with the assumption that all data reporting "hemichannel" involvement really have studied phenomena in which connexons actually form the permeability or conductance pathway.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
December 2005
After stroke, the blood-brain barrier is transiently disrupted, allowing leukocytes to enter the brain and brain antigens to enter the peripheral circulation. This encounter of normally sequestered brain antigens by the systemic immune system could therefore present an opportunity for an autoimmune response to brain to occur after stroke. In this study, we assessed the immune response to myelin basic protein (MBP) in animals subjected to middle cerebral artery occlusion (MCAO).
View Article and Find Full Text PDFLittle is known about the expression and possible functions of unopposed gap junction hemichannels in the brain. Emerging evidence suggests that gap junction hemichannels can act as stand-alone functional channels in astrocytes. With immunocytochemistry, dye uptake, and HPLC measurements, we show that astrocytes in vitro express functional hemichannels that can mediate robust efflux of glutamate and aspartate.
View Article and Find Full Text PDFInt J Dev Neurosci
December 2002
Glial glutamate transport plays a pivotal role in maintaining glutamate homeostasis in the central nervous system. Expression of glutamate transporters is highly regulated during brain development, and a number of pathological conditions are associated with deficits in expression and/or function of glutamate transports. While several soluble factors have been shown to regulate the expression of glutamate transporter, the contribution of cell-cell interaction and cell-environmental interaction in the regulation of glutamate transport is unknown.
View Article and Find Full Text PDF