In autoimmune (type 1) diabetes, autoreactive lymphocytes destroy pancreatic beta-cells responsible for insulin synthesis. To assess the feasibility of gene therapy for type 1 diabetes, recombinant vaccinia virus (rVV) vectors were constructed expressing pancreatic islet autoantigens proinsulin (INS) and a 55-kDa immunogenic peptide from glutamic acid decarboxylase (GAD), and the immunomodulatory cytokine interleukin (IL)-10. To augment the beneficial effects of recombinant virus therapy, the INS and GAD genes were fused to the C terminus of the cholera toxin B subunit (CTB).
View Article and Find Full Text PDFBackground: Interferons (IFNs) play an important role in host antiviral responses, but viruses, including vaccinia viruses (VV), employ mechanisms to disrupt IFN activities, and these viral mechanisms are often associated with their virulence. Here, we explore an attenuation strategy with a vaccine strain of VV lacking a virus-encoded IFN-gamma receptor homolog (viroceptor).
Methods: To facilitate the monitoring of virus properties, first we constructed a Lister vaccine strain derivative VV-RG expressing optical reporters.