Sympathetic circuits including pre-sympathetic neurons in the ventrolateral medulla (VLM) and in the paraventricular nucleus (PVN) of the hypothalamus play an important role in the regulation of hepatic glucose metabolism. Despite the importance of central regulatory pathways, specific information regarding the circuits of liver-related neurons is limited. Here, we tested the hypothesis that PVN neurons are directly connected to spinally-projecting liver-related neurons in the VLM of mice.
View Article and Find Full Text PDFThe prevalence of metabolic disorders, including type 2 diabetes mellitus, continues to increase worldwide. Although newer and more advanced therapies are available, current treatments are still inadequate and the search for solutions remains. The regulation of energy homeostasis, including glucose metabolism, involves an exchange of information between the nervous systems and peripheral organs and tissues; therefore, developing treatments to alter central and/or peripheral neural pathways could be an alternative solution to modulate whole body metabolism.
View Article and Find Full Text PDFStimulation of hepatic sympathetic nerves increases glucose production and glycogenolysis. Activity of pre-sympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the ventrolateral and ventromedial medulla (VLM/VMM) largely influence the sympathetic output. Increased activity of the sympathetic nervous system (SNS) plays a role in the development and progression of metabolic diseases; however, despite the importance of the central circuits, the excitability of pre-sympathetic liver-related neurons remains to be determined.
View Article and Find Full Text PDFVarious risk factors of Alzheimer's disease (AD) are known, such as advanced age, possession of certain genetic variants, accumulation of toxic amyloid-β (Aβ) peptides, and unhealthy lifestyle. An estimate of heritability of AD ranges from 0.13 to 0.
View Article and Find Full Text PDFResearch in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline.
View Article and Find Full Text PDFBrown adipose tissue (BAT) contributes to energy homeostasis via nonshivering thermogenesis. The BAT is densely innervated by the sympathetic nervous system (SNS) and activity of pre-autonomic neurons modulates the sympathetic outflow. Leptin, an adipocyte hormone, alters energy homeostasis and thermogenesis of BAT via several neuronal circuits; however, the cellular effects of leptin on interscapular BAT (iBAT)-related neurons in the hypothalamus remain to be determined.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2021
The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging.
View Article and Find Full Text PDFThe autonomic regulation of hepatic metabolism offers a novel target for the treatment of non-alcoholic fatty liver disease (NAFLD). However, the molecular characteristics of neurons that regulate the brain-liver axis remain unclear. Since mice lacking neuronal lipoprotein lipase (LPL) develop perturbations in neuronal lipid-sensing and systemic energy balance, we reasoned that LPL might be a component of pre-autonomic neurons involved in the regulation of hepatic metabolism.
View Article and Find Full Text PDFBrain renin angiotensin system within the paraventricular nucleus plays a critical role in balancing excitatory and inhibitory inputs to modulate sympathetic output and blood pressure regulation. We previously identified ACE2 and ADAM17 as a compensatory enzyme and a sheddase, respectively, involved in brain renin angiotensin system regulation. Here, we investigated the opposing contribution of ACE2 and ADAM17 to hypothalamic presympathetic activity and ultimately neurogenic hypertension.
View Article and Find Full Text PDFChronic activation of the brain renin-angiotensin system contributes to the development of hypertension by altering autonomic balance. Beyond the essential role of Ang II (angiotensin II) type 1 receptors, ADAM17 (A disintegrin and metalloprotease 17) is also found to promote brain renin-angiotensin system overactivation. ADAM17 is robustly expressed in various cell types within the central nervous system.
View Article and Find Full Text PDFBackground: Elevated advanced glycation end products (AGE) in diabetes mellitus (DM) are implicated in the progression of DM-associated tissue injury, including diabetic nephropathy. The intrarenal renin-angiotensin system, in particular augmentation of angiotensinogen (AGT) in proximal tubular cells (PTC), plays a crucial role in the development of diabetic nephropathy. This study investigated hypothesis that AGE stimulates AGT production in PTC.
View Article and Find Full Text PDFTransient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel expressed in the peripheral and central nervous systems. TRPV1-dependent mechanisms take part in a wide range of physiological and pathophysiological pathways including the regulation of homeostatic functions. TRPV1 expression in the hypothalamus has been described as well as evidence that TRPV1-dependent excitatory inputs to hypothalamic preautonomic neurons are diminished in diabetic conditions.
View Article and Find Full Text PDFEstrogens favor glucose homeostasis primarily through the estrogen receptor-α (ERα), but the respective importance of nuclear ERα (NOER) and membrane ERα (MOER) pools to glucose homeostasis are unknown. We studied glucose homeostasis, insulin secretion, and insulin sensitivity in male and female mice expressing either the NOER or the MOER. Male and female MOER mice exhibited fasting and fed hyperglycemia and glucose intolerance.
View Article and Find Full Text PDFAndrogen excess predisposes women to type 2 diabetes (T2D), but the mechanism of this is poorly understood. We report that female mice fed a Western diet and exposed to chronic androgen excess using dihydrotestosterone (DHT) exhibit hyperinsulinemia and insulin resistance associated with secondary pancreatic β cell failure, leading to hyperglycemia. These abnormalities are not observed in mice lacking the androgen receptor (AR) in β cells and partially in neurons of the mediobasal hypothalamus (MBH) as well as in mice lacking AR selectively in neurons.
View Article and Find Full Text PDFThe adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice.
View Article and Find Full Text PDFPreautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons.
View Article and Find Full Text PDFAlthough the deleterious influence of protein deficiency on fetal programming is well documented, the impact of a Western diet on epigenetic mechanisms is less clear. We hypothesized that high-fat high-sucrose diet (HFHSD) consumption during pregnancy leads to epigenetic modifications within the progeny's compensatory renin-angiotensin system (RAS), affecting autonomic and metabolic functions. Dams were fed HFHSD (45% fat and 30% sucrose) or regular chow (RD) from mating until weaning of the pups (~7 weeks).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
April 2017
Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism.
View Article and Find Full Text PDFBy means of whole mount NADPH-diaphorase histochemistry the distribution pattern of primary sensory cells (PSC) and the pathway of their central processes in the ventral nerve cord (VNC) ganglia were investigated in the lumbricid earthworms, Eisenia fetida and Lumbricus terrestris. The distribution pattern of the stained structures seemed to be the same in both species investigated. Strong labelling occurred in sensory fibre branches of segmental nerves and in each of the sensory longitudinal axon bundles of VNC ganglia.
View Article and Find Full Text PDFDuring the last three to four decades the prevalence of obesity and diabetes mellitus has greatly increased worldwide, including in the United States. Both the short- and long-term forecasts predict serious consequences for the near future, and encourage the development of solutions for the prevention and management of obesity and diabetes mellitus. Transient receptor potential (TRP) channels were identified in tissues and organs important for the control of whole body metabolism.
View Article and Find Full Text PDFUnlabelled: The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRb(POA) neurons) and modulate reproductive function. However, LepRb(POA) neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation.
View Article and Find Full Text PDFStress activation of the hypothalamic-pituitary-adrenal (HPA) axis is regulated by rapid glucocorticoid negative feedback. Chronic unpredictable stress animal models recapitulate certain aspects of major depression in humans, which have been attributed to impaired glucocorticoid negative feedback. We tested for an attenuated HPA sensitivity to fast glucocorticoid feedback inhibition in male rats exposed to a chronic variable stress (CVS) paradigm.
View Article and Find Full Text PDFOlanzapine, an atypical antipsychotic, is widely prescribed for the treatment of schizophrenia and bipolar disorder despite causing undesirable metabolic side effects. A variety of mechanisms and brain sites have been proposed as contributors to the side effects; however, the role of the dorsal motor nucleus of the vagus nerve (DMV), which plays a crucial role in the regulation of subdiaphragmatic organs and thus governs energy and glucose homeostasis, is largely unknown. Identifying the effect of olanzapine on the excitability of DMV neurons in both sexes is thus crucial to understanding possible underlying mechanisms.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
February 2016
Diabetes mellitus and the coexisting conditions and complications, including hypo- and hyperglycemic events, obesity, high cholesterol levels, and many more, are devastating problems. Undoubtedly, there is a huge demand for treatment and prevention of these conditions that justifies the search for new approaches and concepts for better management of whole body metabolism. Emerging evidence demonstrates that the autonomic nervous system is largely involved in the regulation of glucose homeostasis; however, the underlying mechanisms are still under investigation.
View Article and Find Full Text PDF