In animals, PIWI-interacting RNAs (piRNAs) direct PIWI proteins to silence complementary targets such as transposons. In Drosophila and other species with a maternally specified germline, piRNAs deposited in the egg initiate piRNA biogenesis in the progeny. However, Y chromosome loci cannot participate in such a chain of intergenerational inheritance.
View Article and Find Full Text PDFThe piRNA pathway protects germline genomes from selfish genetic elements (e.g. transposons) through their transcript cleavage in the cytoplasm and/or their transcriptional silencing in the nucleus.
View Article and Find Full Text PDFThe asymmetric cell division of stem cells, which produces one stem cell and one differentiating cell, has emerged as a mechanism to balance stem cell self-renewal and differentiation. Elaborate cellular mechanisms that orchestrate the processes required for asymmetric cell divisions are often shared between stem cells and other asymmetrically dividing cells. During asymmetric cell division, cells must establish asymmetry/polarity, which is guided by varying degrees of intrinsic versus extrinsic cues, and use intracellular machineries to divide in a desired orientation in the context of the asymmetry/polarity.
View Article and Find Full Text PDFAsymmetric stem cell division is often accompanied by stereotypical inheritance of the mother and daughter centrosomes. However, it remains unknown whether and how stem cell centrosomes are uniquely regulated and how this regulation may contribute to stem cell fate. Here we identify Klp10A, a microtubule-depolymerizing kinesin of the kinesin-13 family, as the first protein enriched in the stem cell centrosome in male germline stem cells (GSCs).
View Article and Find Full Text PDFMany stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood.
View Article and Find Full Text PDFAsymmetric cell division is utilized by a broad range of cell types to generate two daughter cells with distinct cell fates. In stem cell populations asymmetric cell division is believed to be crucial for maintaining tissue homeostasis, failure of which can lead to tissue degeneration or hyperplasia/tumorigenesis. Asymmetric cell divisions also underlie cell fate diversification during development.
View Article and Find Full Text PDFPhagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17.
View Article and Find Full Text PDFLevels of the selective autophagy substrate p62 have been established in recent years as a specific readout for basal autophagic activity. Here we compared different experimental approaches for using this assay in Drosophila larvae. Similar to the more commonly used western blots, quantifying p62 dots in immunostained fat body cells of L3 stage larvae detected a strong accumulation of endogenous p62 aggregates in null mutants for Atg genes and S6K.
View Article and Find Full Text PDFThe formation of kinetochores shortly before each cell division is a prerequisite for proper chromosome segregation. The synchronous mitoses of Drosophila syncytial embryos have provided an ideal in vivo system to follow kinetochore assembly kinetics and so address the question of how kinetochore formation is regulated. We found that the nuclear exclusion of the Spc105/KNL1 protein during interphase prevents precocious assembly of the Mis12 complex.
View Article and Find Full Text PDFCentromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its N-terminal part appears necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore.
View Article and Find Full Text PDFThe kinetochore is a dynamic multiprotein complex assembled at the centromere in mitosis. Exactly how the structure of the kinetochore changes during mitosis and how its individual components contribute to chromosome segregation is largely unknown. Here we have focused on the contribution of the Mis12 complex to kinetochore assembly and function throughout mitosis in Drosophila.
View Article and Find Full Text PDFThe Mis12/MIND kinetochore complex is composed of 4 subunits of which the Dsn1 protein is a crucial component in all organisms where it has been identified. In Caenorhabditis elegans, depletion of Dsn1 results in a so-called "kinetochore null" phenotype, hence Dsn1's alternative name KNL3. In human, Dsn1 is required to shape an interface between the Mis12 complex and Blinkin, the counterpart of Spc105.
View Article and Find Full Text PDFTwo dUTPase isoforms (23 kDa and 21 kDa) are present in the fruitfly with the sole difference of an N-terminal extension. In Drosophila embryo, both isoforms are detected inside the nucleus. Here, we investigated the function of the N-terminal segment using eYFP-dUTPase constructs.
View Article and Find Full Text PDFAlthough alpha4-tubulin comprises only about one-fifth of the alpha-tubulin pool in every Drosophila egg, in the absence of alpha4-tubulin - in eggs of the kavar(0)/- hemizygous females - only a tassel of short microtubules forms with two barely separated daughter centrosomes. We report that alpha4-tubulin is enriched in the long microtubules that embrace the nuclear envelope and suggest that they push apart daughter centrosomes along the nuclear perimeter during the initial cleavage divisions. In vitro tubulin polymerization showed that alpha4-tubulin is required for rapid tubulin polymerization.
View Article and Find Full Text PDFAs endocytic uptake of the Antennapedia homeodomain-derived penetratin peptide (RQIKIWFQNRRMKWKK) is finally being revealed, some of the early views about penetratin need to be reconsidered. Endocytic uptake seems to contradict the indispensability of tryptophans and also the minimum length of 16 amino acid residues for efficient internalization. To revise the membrane translocation of penetratin, two penetratin analogs were designed and synthesized: a peptide in which tryptophans were replaced by phenylalanines (Phe(6,14)-penetratin, RQIKIFFQNRRMKFKK) and a shortened analog (dodeca-penetratin, RQIKIWF-R-KWKK) made up of only 12 residues.
View Article and Find Full Text PDFThe dominant-negative female-sterile Kavar(D) mutations and their revertant kavar(r) alleles identify the alphaTubulin67C gene of Drosophila melanogaster, which codes for the maternally provided alpha-tubulin(4) isoform. The mutations result in the formation of monopolar, collapsed spindles (each with two nearby centrosomes, a tassel of microtubules and overcondensed chromosomes), thus revealing a novel function for alpha-tubulin(4) in spindle maintenance and elongation. Molecular features of the two Kavar(D) alleles and a kavar(null) allele are described and models for their actions are discussed.
View Article and Find Full Text PDF