Publications by authors named "Zsolt Sebestyen"

Article Synopsis
  • The Centre of Excellence for the Technologies of Gene and Cell Therapy (CTGCT) has been established at the National Institute of Chemistry in Ljubljana, marking Slovenia’s first center dedicated to precision medicine and cutting-edge therapies.
  • The CTGCT aims to advance cancer immunotherapy and personalized treatments for genetic diseases by developing innovative biomedical tools and collaborating with international institutions for effective therapy development.
  • Its focus on translating research into practice, alongside partnerships with clinicians and patient organizations, positions the CTGCT as a key player in improving access to gene and cell therapies across Slovenia and the broader Eastern European region.
View Article and Find Full Text PDF

Background: Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.

View Article and Find Full Text PDF

Modeling immuno-oncology by using patient-derived material and immune cell co-cultures can advance our understanding of immune cell tumor targeting in a patient-specific manner, offering leads to improve cellular immunotherapy. However, fully exploiting these living cultures requires analysis of the dynamic cellular features modeled, for which protocols are currently limited. Here, we describe the application of BEHAV3D, a platform that implements multi-color live 3D imaging and computational tools for: (i) analyzing tumor death dynamics at both single-organoid or cell and population levels, (ii) classifying T cell behavior and (iii) producing data-informed 3D images and videos for visual inspection and further insight into obtained results.

View Article and Find Full Text PDF

Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αβ T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs.

View Article and Find Full Text PDF

γδ T cells are potent anticancer effectors with the potential to target tumours broadly, independent of patient-specific neoantigens or human leukocyte antigen background. γδ T cells can sense conserved cell stress signals prevalent in transformed cells, although the mechanisms behind the targeting of stressed target cells remain poorly characterized. Vγ9Vδ2 T cells-the most abundant subset of human γδ T cells-recognize a protein complex containing butyrophilin 2A1 (BTN2A1) and BTN3A1 (refs.

View Article and Find Full Text PDF

Background: Initial clinical responses with gene engineered chimeric antigen receptor (CAR) T cells in cancer patients are highly encouraging; however, primary resistance and also relapse may prevent durable remission in a substantial part of the patients. One of the underlying causes is the resistance mechanisms in cancer cells that limit effective killing by CAR T cells. CAR T cells exert their cytotoxic function through secretion of granzymes and perforin.

View Article and Find Full Text PDF

Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity.

View Article and Find Full Text PDF

γ9δ2T cells fill a distinct niche in human immunity due to the unique physiology of the phosphoantigen-reactive γ9δ2TCR. Here, we highlight reproducible TCRδ complementarity-determining region 3 (CDR3δ) repertoire patterns associated with γ9δ2T cell proliferation and phenotype, thus providing evidence for the role of the CDR3δ in modulating T-cell responses. Features that determine γ9δ2TCR binding affinity and reactivity to the phosphoantigen-induced ligand appear to similarly underpin clonotypic expansion and differentiation.

View Article and Find Full Text PDF

In the complex interplay between inflammation and graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-HSCT), viral reactivations are often observed and cause substantial morbidity and mortality. As toxicity after allo-HSCT within the context of viral reactivations is mainly driven by αβ T cells, we describe that by delaying αβ T cell reconstitution through defined transplantation techniques, we can harvest the full potential of early reconstituting γδ T cells to control viral reactivations. We summarize evidence of how the γδ T cell repertoire is shaped by CMV and EBV reactivations after allo-HSCT, and their potential role in controlling the most important, but not all, viral reactivations.

View Article and Find Full Text PDF

Background: γ9δ2 T cells hold great promise as cancer therapeutics because of their unique capability of reacting to metabolic changes with tumor cells. However, it has proven very difficult to translate this promise into clinical success.

Methods: In order to better utilize the tumor reactivity of γ9δ2T cells and combine this with the great potential of T cell engager molecules, we developed a novel bispecific molecule by linking the extracellular domains of tumor-reactive γ9δ2TCRs to a CD3-binding moiety, creating gamma delta TCR anti-CD3 bispecific molecules (GABs).

View Article and Find Full Text PDF
Article Synopsis
  • - γδT cell receptors (γδTCRs) are effective in targeting cancer cells without needing specific MHC restrictions, making them a promising complement to existing therapies focused on other T cell types.
  • - A specific γδTCR, known as Vγ5Vδ1TCR, can attack HLA-A*24:02-expressing tumors without causing off-target effects, showing enhanced action when paired with the CD8α co-receptor in specially engineered T cells.
  • - The engineered T cells, now referred to as TEG011_CD8α, displayed improved tumor control in mouse models, achieving better T cell persistence and functionality, particularly in controlling tumors in the bone marrow compared to the original T
View Article and Find Full Text PDF

T cell engineering strategies offer cures to patients and have entered clinical practice with chimeric antibody-based receptors; αβT cell receptor (αβTCR)-based strategies are, however, lagging behind. To allow a more rapid and successful translation to successful concepts also using αβTCRs for engineering, incorporating a method for the purification of genetically modified T cells, as well as engineered T cell deletion after transfer into patients, could be beneficial. This would allow increased efficacy, reduced potential side effects, and improved safety of newly to-be-tested lead structures.

View Article and Find Full Text PDF

The aim of this study was to introduce the simultaneous integrated boost (SIB) technique to assess the safety of replacement of the brachytherapy (BT) boost for ineligible patients with cervical cancer receiving radiochemotherapy (RCT). Fourteen patients were enrolled between 2015 and 2018. SIB was delivered using RapidArc technique at doses of 2.

View Article and Find Full Text PDF

Background: Radiation therapy has undergone significant technical development in the past decade. However, the complex therapy of intermediate-risk patients with organ-confined prostate carcinoma still poses many questions. Our retrospective study investigated the impact of selected components of the treatment process including radiotherapy, hormone deprivation, risk classification, and patients' response to therapy.

View Article and Find Full Text PDF

Background: Craniospinal irradiation (CSI) of childhood tumors with the RapidArc technique is a new method of treatment. Our objective was to compare the acute hematological toxicity pattern during 3D conformal radiotherapy with the application of the novel technique.

Methods: Data from patients treated between 2007 and 2014 were collected, and seven patients were identified in both treatment groups.

View Article and Find Full Text PDF

γ9δ2T cells play a major role in cancer immune surveillance, yet the clinical translation of their in vitro promise remains challenging. To address limitations of previous clinical attempts using expanded γ9δ2T cells, we explored the clonal diversity of γ9δ2T cell repertoires and characterized their target. We demonstrated that only a fraction of expanded γ9δ2T cells was active against cancer cells and that activity of the parental clone, or functional avidity of selected γ9δ2 T cell receptors (γ9δ2TCRs), was not associated with clonal frequency.

View Article and Find Full Text PDF

γδT cells play an important role in cancer immunosurveillance and are able to distinguish malignant cells from their healthy counterparts via their γδTCR. This characteristic makes γδT cells an attractive candidate for therapeutic application in cancer immunotherapy. Previously, we have identified a novel CD8α-dependent tumor-specific allo-HLA-A*24:02-restricted Vγ5Vδ1TCR with potential therapeutic value when used to engineer αβT cells from HLA-A*24:02 harboring individuals.

View Article and Find Full Text PDF

γδ T cells in human solid tumors remain poorly defined. Here, we describe molecular and functional analyses of T-cell receptors (TCR) from tumor-infiltrating γδ T lymphocytes (γδ TIL) that were in direct contact with tumor cells in breast cancer lesions from archival material. We observed that the majority of γδ TILs harbored a proinflammatory phenotype and only a minority associated with the expression of IL17.

View Article and Find Full Text PDF

Despite extensive usage of gene therapy medicinal products (GTMPs) in clinical studies and recent approval of chimeric antigen receptor (CAR) T cell therapy, little information has been made available on the precise molecular characterization and possible variations in terms of insert integrity and vector copy numbers of different GTMPs during the complete production chain. Within this context, we characterize αβT cells engineered to express a defined γδT cell engineered to express a defined γδT receptor (TEG) currently used in a first-in-human clinical study (NTR6541). Utilizing targeted locus amplification in combination with next generation sequencing for the vector producer clone and TEG001 products, we report on five single-nucleotide variants and nine intact vector copies integrated in the producer clone.

View Article and Find Full Text PDF

Clinical responses to checkpoint inhibitors used for cancer immunotherapy seemingly require the presence of αβT cells that recognize tumour neoantigens, and are therefore primarily restricted to tumours with high mutational load. Approaches that could address this limitation by engineering αβT cells, such as chimeric antigen receptor T (CAR T) cells, are being investigated intensively, but these approaches have other issues, such as a scarcity of appropriate targets for CAR T cells in solid tumours. Consequently, there is renewed interest among translational researchers and commercial partners in the therapeutic use of γδT cells and their receptors.

View Article and Find Full Text PDF

Background: γ9δ2T cells, which express Vγ9 and Vδ2 chains of the T cell receptor (TCR), mediate cancer immune surveillance by sensing early metabolic changes in malignant leukemic blast and not their healthy hematopoietic stem counterparts via the γ9δ2TCR targeting joined conformational and spatial changes of CD277 at the cell membrane (CD277J). This concept led to the development of next generation CAR-T cells, so-called TEGs: αβT cells Engineered to express a defined γδTCR. The high affinity γ9δ2TCR clone 5 has recently been selected within the TEG format as a clinical candidate (TEG001).

View Article and Find Full Text PDF

γ9δ2T cells play a critical role in daily cancer immune surveillance by sensing cancer-mediated metabolic changes. However, a major limitation of the therapeutic application of γ9δ2T cells is their diversity and regulation through innate co-receptors. In order to overcome natural obstacles of γ9δ2T cells, we have developed the concept of T cells engineered to express a defined γδT cell receptor (TEGs).

View Article and Find Full Text PDF

Bone marrow niches support multiple myeloma, providing signals and cell-cell interactions essential for disease progression. A 3D bone marrow niche model was developed, in which supportive multipotent mesenchymal stromal cells and their osteogenic derivatives were co-cultured with endothelial progenitor cells. These co-cultured cells formed networks within the 3D culture, facilitating the survival and proliferation of primary CD138 myeloma cells for up to 28 days.

View Article and Find Full Text PDF

Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far have been generally well tolerated and were able to induce significant clinical responses. However, overall results were inconsistent, possibly due to the fact that these strategies induced systemic activation of Vγ9Vδ2-T cells without preferential accumulation and targeted activation in the tumor.

View Article and Find Full Text PDF