Polymeric membranes based on the semi-crystalline syndiotactic-polystyrene (sPS) become hydrophilic, and therefore conductive, following the functionalization of the amorphous phase by the solid-state sulfonation procedure. Because the crystallinity of the material, and thus the mechanical strength of the membranes, is maintained and the resistance to oxidation decomposition can be improved by doping the membranes with fullerenes, the sPS becomes attractive for proton-exchange membranes fuel cells (PEMFC) and energy storage applications. In the current work we report the micro-structural characterization by small-angle neutron scattering (SANS) method of sulfonated sPS films and sPS-fullerene composite membranes at different temperatures between 20 °C and 80 °C, under the relative humidity (RH) level from 10% to 70%.
View Article and Find Full Text PDFAirbursts/impacts by a fragmented comet or asteroid have been proposed at the Younger Dryas onset (12.80 ± 0.15 ka) based on identification of an assemblage of impact-related proxies, including microspherules, nanodiamonds, and iridium.
View Article and Find Full Text PDFIt has been proposed that fragments of an asteroid or comet impacted Earth, deposited silica- and iron-rich microspherules and other proxies across several continents, and triggered the Younger Dryas cooling episode 12,900 years ago. Although many independent groups have confirmed the impact evidence, the hypothesis remains controversial because some groups have failed to do so. We examined sediment sequences from 18 dated Younger Dryas boundary (YDB) sites across three continents (North America, Europe, and Asia), spanning 12,000 km around nearly one-third of the planet.
View Article and Find Full Text PDFPrompt gamma-ray spectra sometimes contain hundreds of characteristic peaks, and the masses of the sample components can be determined from dozens of gamma-ray peak areas, some of which are affected by spectral interferences. Reliable qualitative and quantitative analyses can only be performed by using a precisely calibrated detector system, an accurate spectroscopic data library, high-quality spectroscopy software, and a sophisticated method to convert raw data into chemical composition. This article describes the steps of the chemical analysis with prompt gamma activation analysis (PGAA).
View Article and Find Full Text PDFPrompt gamma activation analysis (PGAA) has been further developed to analyze reacting components inside a chemical reactor. The new method, in situ PGAA, was used to determine the hydrogen-to-palladium molar ratio under various conditions of palladium-catalyzed alkyne hydrogenation. The H/Pd molar ratio was successfully measured in the range of 0.
View Article and Find Full Text PDFAlkynes can be selectively hydrogenated into alkenes on solid palladium catalysts. This process requires a strong modification of the near-surface region of palladium, in which carbon (from fragmented feed molecules) occupies interstitial lattice sites. In situ x-ray photoelectron spectroscopic measurements under reaction conditions indicated that much less carbon was dissolved in palladium during unselective, total hydrogenation.
View Article and Find Full Text PDF