While chromatin immunoprecipitation has become a widely-used method in the field of transcription regulation studies, serious limitations connected to the complexity and relatively little standardization of the method serve as obstacles for its use in clinical research. In this paper we introduce a method for developing bacteriophage-based controls for the better standardization of the chromatin immunoprecipitation reactions. Random phage display libraries were selected with ChIP-grade antibodies for several rounds and individual monoclonal phages were isolated.
View Article and Find Full Text PDFDifferentiation syndrome (DS) is a life-threatening complication arising during retinoid treatment of acute promyelocytic leukemia (APL). Administration of all-trans retinoic acid leads to significant changes in gene expression, among the most induced of which is transglutaminase 2, which is not normally expressed in neutrophil granulocytes. To evaluate the pathophysiological function of transglutaminase 2 in the context of immunological function and disease outcomes, such as excessive superoxide anion, cytokine, and chemokine production in differentiated NB4 cells, we used an NB4 transglutaminase knock-out cell line and a transglutaminase inhibitor, NC9, which inhibits both transamidase- and guanosine triphosphate-binding activities, to clarify the contribution of transglutaminase to the development of potentially lethal DS during all-trans retinoic acid treatment of APL.
View Article and Find Full Text PDFAging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2016
N-glycosylation profiling of glycoprotein biotherapeutics is an essential step in each phase of product development in the biopharmaceutical industry. For example, during clone selection, hundreds of clones should be analyzed quickly from limited amounts of samples. On the other hand, identification of disease related glycosylation alterations can serve as early indicators (glycobiomarkers) for various pathological conditions in the biomedical field.
View Article and Find Full Text PDFIn this paper, we report on a novel oriented peptide-N-glycosidase F (PNGase F) immobilization approach onto methacrylate based monolithic support for rapid, reproducible and efficient release of the N-linked carbohydrate moieties from glycoproteins. The glutathione-S-transferase-fusion PNGase F (PNGase F-GST) was expressed in Escherichia coli using regular vector technology. The monolithic pore surface was functionalized with glutathione via a succinimidyl-6-(iodoacetyl-amino)-hexanoate linker and the specific affinity of GST toward glutathione was utilized for the oriented coupling.
View Article and Find Full Text PDFThe multifunctional tissue transglutaminase 2 (TG2) has a four-domain structure with several Ca(2+)-regulated biochemical activities, including transglutamylation and GTP hydrolysis. The structure of the Ca(2+)-binding form of the human enzyme is not known, and its Ca(2+)-binding sites have not been fully characterized. By mutagenesis, we have targeted its active site Cys, three sites based on homology to Ca(2+)-binding residues of epidermal transglutaminase and factor XIIIa (S1-S3), and two regions with negative surface potentials (S4 and S5).
View Article and Find Full Text PDFUnderstanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently.
View Article and Find Full Text PDF