We analyzed genomic data from the prostate cancer of African- and European American men to identify differences contributing to racial disparity of outcome. We also performed FISH-based studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CHD1-deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis.
View Article and Find Full Text PDFPatients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E) pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained Whole Slide Images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts.
View Article and Find Full Text PDFWe analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 () loss on prostate cancer tissue microarrays. We created CRISPR edited, deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis.
View Article and Find Full Text PDFHomologous recombination (HR) and nucleotide excision repair (NER) are the two most frequently disabled DNA repair pathways in cancer. HR-deficient breast, ovarian, pancreatic and prostate cancers respond well to platinum chemotherapy and PARP inhibitors. However, the frequency of HR deficiency in gastric and esophageal adenocarcinoma (GEA) still lacks diagnostic and functional validation.
View Article and Find Full Text PDFImmune checkpoint inhibitor therapy has dramatically improved survival in a significant subset of patients with several solid tumor types. Increasing the number of patients benefitting from this form of therapy is an important translational research goal. Correlations between the composition of the gut microbiome and response to immune checkpoint inhibitor therapy raised the possibility that direct modulation of the gut microbiome may significantly improve the clinical benefit of this treatment.
View Article and Find Full Text PDFDue to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines.
View Article and Find Full Text PDFAtaxia-telangiectasia mutated (ATM) plays a central role in the cellular response to DNA damage and ATM alterations are common in several tumor types including bladder cancer. However, the specific impact of ATM alterations on therapy response in bladder cancer is uncertain. Here, we combine preclinical modeling and clinical analyses to comprehensively define the impact of ATM alterations on bladder cancer.
View Article and Find Full Text PDFGastroesophageal adenocarcinoma (GEA) is an aggressive malignancy with chromosomal instability (CIN). To understand adaptive responses enabling DNA damage response (DDR) and CIN, we analyzed matched normal, premalignant, and malignant gastric lesions from human specimens and a carcinogen-induced mouse model, observing activation of replication stress, DDR, and p21 in neoplastic progression. In GEA cell lines, expression of DDR markers correlated with ploidy abnormalities, such as number of high-level focal amplifications and whole-genome duplication (WGD).
View Article and Find Full Text PDFTo date, single-nucleotide polymorphisms (SNPs) have been the most intensively investigated class of polymorphisms in genome wide associations studies (GWAS), however, other classes such as insertion-deletion or multiple nucleotide length polymorphism (MNLPs) may also confer disease risk. Multiple reports have shown that the 5p15.33 prostate cancer risk region is a particularly strong expression quantitative trait locus (eQTL) for Iroquois Homeobox 4 (IRX4) transcripts.
View Article and Find Full Text PDFBackground: Effective cooperation between B-cells and T-cells within the tumor microenvironment may lead to the regression of established tumors. B-cells and T-cells can recognize tumor antigens with exquisite specificity via their receptor complexes. Nevertheless, whether a diverse intratumoral B-cells and T-cell receptor (BCR, TCR) repertoire affects the tumor immune microenvironment (TIME) and clinical outcomes in patients treated with immunotherapy is unclear.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8 T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain.
View Article and Find Full Text PDFCancer cells are dependent on cholesterol, and they possess strictly controlled cholesterol homeostasis mechanisms. These allow them to smoothly switch between cholesterol synthesis and uptake to fulfill their needs and to adapt environmental changes. Here we describe a mechanism of how cancer cells employ oncogenic growth factor signaling to promote uptake and utilization of extracellular cholesterol via Myeloid Zinc Finger 1 (MZF1)-mediated Niemann Pick C1 (NPC1) expression and upregulated macropinocytosis.
View Article and Find Full Text PDFGastroesophageal adenocarcinoma (GEA) is an aggressive, often lethal, malignancy that displays marked chromosomal instability (CIN). To understand adaptive responses that enable CIN, we analyzed paired normal, premalignant, and malignant gastric lesions from human specimens and a carcinogen-induced mouse model, observing activation of replication stress, DNA damage response (DDR), and cell cycle regulator p21 in neoplastic progression. In GEA cell lines, expression of DDR markers correlated with ploidy abnormalities, including high-level focal amplifications and whole-genome duplication (WGD).
View Article and Find Full Text PDFPurpose: Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration.
Experimental Design: We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines.
Prostate cancer harboring BRCA1/2 mutations are often exceptionally sensitive to PARP inhibitors. However, genomic alterations in other DNA damage response genes have not been consistently predictive of clinical response to PARP inhibition. Here, we perform genome-wide CRISPR-Cas9 knockout screens in BRCA1/2-proficient prostate cancer cells and identify previously unknown genes whose loss has a profound impact on PARP inhibitor response.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Less than 20% of patients are diagnosed with resectable disease. Identifying truly resectable disease is challenging because 20%-40% of the patients subjected to resection are found to have advanced disease during surgery.
View Article and Find Full Text PDFResponses to immunotherapy can be very durable but acquired resistance leading to tumor progression often occurs. We investigated a patient with melanoma resistant to anti-programmed death 1 (anti-PD-1) who participated in the CA224-020 clinical trial (NCT01968109) and had further progression after an initial objective response to anti-PD-1 plus anti-lymphocyte activation gene 3. We found consecutive acquisition of beta-2 microglobulin (B2M) loss and impaired Janus kinase 1 (JAK1) signaling that coexisted in progressing tumor cells.
View Article and Find Full Text PDFPatients with advanced pancreatic ductal adenocarcinoma (PDAC) have a dismal prognosis. We aimed to find a prognostic protein signature for overall survival (OS) in patients with advanced PDAC, and to explore whether early changes in circulating-protein levels could predict survival. We investigated 92 proteins using the Olink Immuno-Oncology panel in serum samples from 363 patients with advanced PDAC.
View Article and Find Full Text PDFPARP inhibitors were recently approved for treatment of molecularly-defined subsets of metastatic castrate-resistant prostate cancer (mCRPC) patients. Although the PARP inhibitor olaparib was approved for use in patients with a mutation in one of fourteen genes, the mutation frequency of the genes varies widely in mCRPC and the impact of the less commonly altered genes on PARP inhibitor sensitivity is uncertain. We used functional approaches to directly test the impact of PALB2 and BARD1 loss on homologous recombination (HR) function and PARP inhibitor sensitivity in prostate cancer cell lines.
View Article and Find Full Text PDFThe anticancer immune response is shaped by immunogenic cell stress and death pathways. Thus, cancer cells can release danger-associated molecular patterns that act on pattern recognition receptors expressed by dendritic cells and their precursors to elicit an antitumor immune response. Here, we investigated the impact of single nucleotide polymorphisms (SNPs) in genes affecting this cancer-immunity dialogue in the context of head and neck squamous cell carcinoma (HNSCC).
View Article and Find Full Text PDFCurrent targeted cancer therapies are largely guided by mutations of a single gene, which overlooks concurrent genomic alterations. Here, we show that , , and , three closely located genes on chromosome 13q, are frequently deleted in prostate cancer individually or jointly. Loss of confers cancer cells sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition due to impaired ribonucleotide excision repair and PARP trapping.
View Article and Find Full Text PDFBladder cancer is a genetically heterogeneous disease, and novel therapeutic strategies are needed to expand treatment options and improve clinical outcomes. Here, we identified a unique subset of urothelial tumors with focal amplification of the RAF1 (CRAF) kinase gene. RAF1-amplified tumors had activation of the RAF/MEK/ERK signaling pathway and exhibited a luminal gene expression pattern.
View Article and Find Full Text PDFPurpose: Homologous recombination (HR) deficiency (HRD) is one of the key determinants of PARP inhibitor response in ovarian cancer, and its accurate detection in tumor biopsies is expected to improve the efficacy of this therapy. Because HRD induces a wide array of genomic aberrations, mutational signatures may serve as a companion diagnostic to identify PARP inhibitor-responsive cases.
Experimental Design: From the The Cancer Genome Atlas (TCGA) whole-exome sequencing (WES) data, we extracted different types of mutational signature-based HRD measures, such as the HRD score, genome-wide LOH, and HRDetect trained on ovarian and breast cancer-specific sequencing data.