Publications by authors named "Zsofia Penzes"

Article Synopsis
  • The endocannabinoid system (ECS) is a crucial regulatory network involved in skin health and immune response, with endocannabinoids like anandamide showing anti-inflammatory properties.
  • Research focused on understanding the relationship between monocyte-derived Langerhans cells (moLCs) and the ECS, particularly how endocannabinoids influence immune responses and inflammation in skin cells.
  • Methodologically, human monocytes were differentiated into moLCs with anandamide, revealing that while it didn't significantly impact cell viability, it had minor effects on specific cell markers and influenced T cell responses through gene expression analysis.
View Article and Find Full Text PDF

Introduction: Extracts and compounds isolated from hemp (Cannabis sativa) are increasingly gaining popularity in the treatment of a number of diseases, with topical formulations for dermatological conditions leading the way. Phytocannabinoids such as ( )-cannabidiol, ( )-cannabinol and ( )-Δ9-tetrahydrocannabivarin (CBD, CBN, and THCV, respectively), are present in variable amounts in the plant, and have been shown to have mostly anti-inflammatory effects both in vitro and in vivo, albeit dominantly in murine models. The role of phytocannabinoids in regulating responses of dendritic cells (DCs) remains unclear.

View Article and Find Full Text PDF

Langerhans cells (LCs) are the sole professional antigen-presenting cell normally found in the human epidermal compartment. Research into their physiological role is hindered by the fact that they are invariably activated during isolation from the skin. To overcome this challenge, we turned to a monocyte-derived LC (moLC) model, which we characterized with RNA sequencing, and compared the transcriptome of moLCs with that of donor-matched immature dendritic cells.

View Article and Find Full Text PDF

TRPV3 (transient receptor potential vanilloid 3) is a pro-inflammatory ion channel mostly expressed by keratinocytes of the human skin. Previous studies have shown that the expression of TRPV3 is markedly upregulated in the lesional epidermis of atopic dermatitis (AD) patients suggesting a potential pathogenetic role of the ion channel in the disease. In the current study, we aimed at defining the molecular and functional expression of TRPV3 in non-lesional skin of AD patients as previous studies implicated that healthy-appearing skin in AD is markedly distinct from normal skin with respect to terminal differentiation and certain immune function abnormalities.

View Article and Find Full Text PDF

Photodamage-induced and viral keratitis could benefit from treatment with novel nonsteroid anti-inflammatory agents. Therefore, we determined whether human corneal epithelial cells (HCECs) express members of the endocannabinoid system (ECS), and examined how the endocannabinoid anandamide (AEA, N-arachidonoyl ethanolamine) influences the Toll-like receptor 3 (TLR3) agonism- or UVB irradiation-induced inflammatory response of these cells. Other than confirming the presence of cannabinoid receptors, we show that endocannabinoid synthesizing and catabolizing enzymes are also expressed in HCECs in vitro, as well as in the epithelial layer of the human cornea in situ, proving that they are one possible source of endocannabinoids.

View Article and Find Full Text PDF

During the molecular transduction of itch, the stimulation of pruriceptors on sensory fibers leads to the activation or sensitization of ion channels, which results in a consequent depolarization of the neurons. These ion channels mostly belong to the transient receptor potential (TRP) channels, which are involved in nociception and thermosensation. In particular, TRPV1 and TRPA1 were described in the transduction of both thermal nociception as well as histaminergic and non-histaminergic itch.

View Article and Find Full Text PDF

We have shown previously that endocannabinoids promote sebaceous lipogenesis, and sebocytes are involved in the metabolism of the endocannabinoid-like substance oleoylethanolamide (OEA). OEA is an endogenous activator of GPR119, a recently deorphanized receptor, which currently is being investigated as a promising antidiabetic drug target. In this study, we investigated the effects of OEA as well as the expression and role of GPR119 in human sebocytes.

View Article and Find Full Text PDF

Background: Volatile anaesthetics (VAs) are the most widely used compounds to induce reversible loss of consciousness and maintain general anaesthesia during surgical interventions. Although the mechanism of their action is not yet fully understood, it is generally believed, that VAs depress central nervous system functions mainly through modulation of ion channels in the neuronal membrane, including 2-pore-domain K+ channels, GABA and NMDA receptors. Recent research also reported their action on nociceptive and thermosensitive TRP channels expressed in the peripheral nervous system, including TRPV1, TRPA1, and TRPM8.

View Article and Find Full Text PDF