Publications by authors named "Zsanett Dorko"

This work presents three new experimental methods for studying molecular imprinting. The electric conductivity measurements of the pre-polymerization mixture of amine templates in an aprotic solvent provide evidence of ionic dissociation of the pre-polymerization complexes. The displacement measurement of the template propranolol from its molecularly imprinted polymer (MIP) using a quaternary ammonium ion in toluene, shows that this MIP behaves as an ion exchanger even in a non-polar solvent.

View Article and Find Full Text PDF

One of the main reasons for making molecularly imprinted polymers (MIPs) has been that MIPs interact selectively with a specific target compound. This claim is investigated here with the example of a widely used type of noncovalent MIP, the MIP for the beta blocker propranolol. Adsorption isotherms of this MIP and of a nonimprinted control polymer (NIP), respectively, have been measured with a series of compounds in the porogen solvent acetonitrile.

View Article and Find Full Text PDF

A simple and efficient method is presented for assessing molecularly imprinted polymers (MIP) and other sorbents from the point of view of practical applications. The adsorption isotherms of the compounds, which need to be separated or detected in an application, are constructed from a small number of measured points on a log-log chart and then are compared graphically. Despite its simplicity and robustness this method reveals the information needed for optimal selection between MIPs and alternative sorbents.

View Article and Find Full Text PDF

Molecularly imprinted polymers bind their target compounds at binding sites. The binding sites are typically based on some type of functional group, such as carboxyl group. The total amount of such functional groups and their distribution into available and unavailable groups is not well known.

View Article and Find Full Text PDF

Different measures of selectivity are in use for single channel and multichannel linear analytical measurements, respectively. It is important to understand that these two measures express related but still distinctly different features of the respective measurements. These relationships are clarified by introducing new arguments.

View Article and Find Full Text PDF

Selectivity is extremely important in analytical chemistry but its definition is elusive despite continued efforts by professional organizations and individual scientists. This paper shows that the existing selectivity concepts for univariate analytical methods broadly fall in two classes: selectivity concepts based on measurement error and concepts based on response surfaces (the response surface being the 3D plot of the univariate signal as a function of analyte and interferent concentration, respectively). The strengths and weaknesses of the different definitions are analyzed and contradictions between them unveiled.

View Article and Find Full Text PDF