Publications by authors named "Zozulya A"

We report on the feasibility of Fourier transform holography in the hard X-ray regime using a Free Electron Laser source. Our study shows successful single and multi-pulse holographic reconstructions of the nanostructures. We observe beam-induced heating of the sample exposed to the intense X-ray pulses leading to reduced visibility of the holographic reconstructions.

View Article and Find Full Text PDF

The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging.

View Article and Find Full Text PDF

The article presents experimental data on vibrational spectroscopy of worldwide amber and amber-like resins. IR spectra were obtained using SHIMADZU IRPrestige-2 (Japan). Raman spectra were obtained using a Virsa Raman analyzer (UK).

View Article and Find Full Text PDF

The Materials Imaging and Dynamics (MID) instrument at the European X-ray Free-Electron Laser Facility (EuXFEL) is equipped with a multipurpose diagnostic end-station (DES) at the end of the instrument. The imager unit in DES is a key tool for aligning the beam to a standard trajectory and for adjusting optical elements such as focusing lenses or the split-and-delay line. Furthermore, the DES features a bent-diamond-crystal spectrometer to disperse the spectrum of the direct beam to a line detector.

View Article and Find Full Text PDF

Unlabelled: In this work, we study the jetting dynamics of individual cavitation bubbles using x-ray holographic imaging and high-speed optical shadowgraphy. The bubbles are induced by a focused infrared laser pulse in water near the surface of a flat, circular glass plate, and later probed with ultrashort x-ray pulses produced by an x-ray free-electron laser (XFEL). The holographic imaging can reveal essential information of the bubble interior that would otherwise not be accessible in the optical regime due to obscuration or diffraction.

View Article and Find Full Text PDF

Resonant oscillators with stable frequencies and large quality factors help us to keep track of time with high precision. Examples range from quartz crystal oscillators in wristwatches to atomic oscillators in atomic clocks, which are, at present, our most precise time measurement devices. The search for more stable and convenient reference oscillators is continuing.

View Article and Find Full Text PDF

We demonstrate that x-ray fluorescence emission, which cannot maintain a stationary interference pattern, can be used to obtain images of structures by recording photon-photon correlations in the manner of the stellar intensity interferometry of Hanbury Brown and Twiss. This is achieved utilizing femtosecond-duration pulses of a hard x-ray free-electron laser to generate the emission in exposures comparable to the coherence time of the fluorescence. Iterative phasing of the photon correlation map generated a model-free real-space image of the structure of the emitters.

View Article and Find Full Text PDF

Purpose: To perform the analysis of the peripheral blood lymphocyte changes after stereotactic ablative radiotherapy (SABR) in patients with oligometastatic cancers.

Materials And Methods: The dynamics of the immune status in peripheral blood was prospectively evaluated in 46 patients with lung (17 cases) or liver (29 cases) metastases treated by SABR. Flow cytometry of peripheral blood lymphocyte subpopulations was performed before SABR, 3-4 weeks and 6-8 weeks after the end of SABR: 3 fractions of 15-20 Gy or 4 fractions of 13.

View Article and Find Full Text PDF

While stripe phases with broken rotational symmetry of charge density are known to emerge in doped strongly correlated perovskites, the dynamics and heterogeneity of spatial ordering remain elusive. Here we shed light on the temperature dependent lattice motion and the spatial nanoscale phase separation of charge density wave order in the archetypal striped phase in LaSrNiO (LSNO) perovskite using X-ray photon correlation spectroscopy (XPCS) joint with scanning micro X-ray diffraction (SµXRD). While it is known that the CDW in 1/8 doped cuprates shows a remarkable stability we report the CDW motion dynamics by XPCS in nickelates with an anomalous quantum glass regime at low temperature, T < 65 K, and the expected thermal melting at higher temperature 65 < T < 120 K.

View Article and Find Full Text PDF

X-ray free-electron lasers (XFELs) with megahertz repetition rate can provide novel insights into structural dynamics of biological macromolecule solutions. However, very high dose rates can lead to beam-induced dynamics and structural changes due to radiation damage. Here, we probe the dynamics of dense antibody protein (Ig-PEG) solutions using megahertz X-ray photon correlation spectroscopy (MHz-XPCS) at the European XFEL.

View Article and Find Full Text PDF

Due to the high intensity and MHz repetition rate of photon pulses generated by the European X-ray Free-Electron Laser, the heat load on silicon crystal monochromators can become large and prevent ideal transmission in Bragg diffraction geometry due to crystal deformation. Here, we present experimental data illustrating how heat load affects the performance of a cryogenically cooled monochromator under such conditions. The measurements are in good agreement with a depth-uniform model of X-ray dynamical diffraction taking beam absorption and heat deformation of the crystals into account.

View Article and Find Full Text PDF

We study the temporal stability of stripe-type spin order in a layered nickelate with x-ray photon correlation spectroscopy and observe fluctuations on timescales of tens of minutes over a wide temperature range. These fluctuations show an anomalous temperature dependence: they slow down at intermediate temperatures and speed up on both heating and cooling. This behavior appears to be directly connected with spatial correlations: stripes fluctuate slowly when stripe correlation lengths are large and become faster when spatial correlations decrease.

View Article and Find Full Text PDF

Cavitation bubbles can be seeded from a plasma following optical breakdown, by focusing an intense laser in water. The fast dynamics are associated with extreme states of gas and liquid, especially in the nascent state. This offers a unique setting to probe water and water vapor far-from equilibrium.

View Article and Find Full Text PDF

Single-pulse holographic imaging at XFEL sources with 10 photons delivered in pulses shorter than 100 fs reveal new quantitative insights into fast phenomena. Here, a timing and synchronization scheme for stroboscopic imaging and quantitative analysis of fast phenomena on time scales (sub-ns) and length-scales (≲100 nm) inaccessible by visible light is reported. A fully electronic delay-and-trigger system has been implemented at the MID station at the European XFEL, and applied to the study of emerging laser-driven cavitation bubbles in water.

View Article and Find Full Text PDF

The Materials Imaging and Dynamics (MID) instrument at the European X-ray Free-Electron Laser (EuXFEL) facility is described. EuXFEL is the first hard X-ray free-electron laser operating in the MHz repetition range which provides novel science opportunities. The aim of MID is to enable studies of nano-structured materials, liquids, and soft- and hard-condensed matter using the bright X-ray beams generated by EuXFEL.

View Article and Find Full Text PDF

X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.

View Article and Find Full Text PDF

This paper reports on coherent scattering experiments in the low-count regime with less than one photon per pixel per acquisition on average, conducted with two detectors based on the Eiger single-photon-counting chip. The obtained photon-count distributions show systematic deviations from the expected Poisson-gamma distribution, which result in a strong overestimation of the measured speckle contrast. It is shown that these deviations originate from an artificial increase of double-photon events, which is proportional to the detected intensity and inversely proportional to the exposure time.

View Article and Find Full Text PDF

The European X-ray Free Electron Laser (EuXFEL) offers intense, coherent femtosecond pulses, resulting in characteristic peak brilliance values a billion times higher than that of conventional synchrotron facilities. Such pulses result in extreme peak radiation levels of the order of terawatts cm for any optical component in the beam and can exceed the ablation threshold of many materials. Diamond is considered the optimal material for such applications due to its high thermal conductivity (2052 W mK at 300 K) and low absorption for hard X-rays.

View Article and Find Full Text PDF

We show three-dimensional images of phase ordering in a Fe_{55}Al_{45} alloy obtained by coherent x-ray diffraction Bragg ptychography. Fe-Al alloys display ordered phases where the atoms organize on sublattices resulting in the emergence of otherwise forbidden superlattice reflections. The degeneracy of the ordering results in antiphase domain boundaries that, in addition to the general lattice strain, provide phase shifts of the diffracted beam depending on the reflection.

View Article and Find Full Text PDF

High catalytic efficiency in metal nanocatalysts is attributed to large surface area to volume ratios and an abundance of under-coordinated atoms that can decrease kinetic barriers. Although overall shape or size changes of nanocatalysts have been observed as a result of catalytic processes, structural changes at low-coordination sites such as edges, remain poorly understood. Here, we report high-lattice distortion at edges of Pt nanocrystals during heterogeneous catalytic methane oxidation based on in situ 3D Bragg coherent X-ray diffraction imaging.

View Article and Find Full Text PDF

The structural rearrangement of polystyrene colloidal crystals under dry sintering conditions has been revealed by in situ grazing incidence X-ray scattering. The measured diffraction patterns were analysed using distorted wave Born approximation (DWBA) theory and the structural parameters of the as-grown colloidal crystals of three different particle sizes were determined for the in-plane and out-of-plane directions in a film. By analysing the temperature evolution of the diffraction peak positions, integrated intensities, and widths, the detailed scenario of the structural rearrangement of crystalline domains at the nanoscale has been revealed, including thermal expansion, particle shape transformation and crystal amorphisation.

View Article and Find Full Text PDF

GaN nanowires (NWs) are promising building blocks for future optoelectronic devices and nanoelectronics. They exhibit stronger piezoelectric properties than bulk GaN. This phenomena may be crucial for applications of NWs and makes their study highly important.

View Article and Find Full Text PDF

Technologically important properties of ferroic materials are determined by their intricate response to external stimuli. This response is driven by distortions of the crystal structure and/or by domain wall motion. Experimental separation of these two mechanisms is a challenging problem which has not been solved so far.

View Article and Find Full Text PDF

X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy.

View Article and Find Full Text PDF

Ptychographic coherent X-ray imaging is applied to obtain a projection of the electron density of colloidal crystals, which are promising nanoscale materials for optoelectronic applications and important model systems. Using the incident X-ray wavefield reconstructed by mixed states approach, a high resolution and high contrast image of the colloidal crystal structure is obtained by ptychography. The reconstructed colloidal crystal reveals domain structure with an average domain size of about 2 µm.

View Article and Find Full Text PDF