Metabolic dysfunction-associated steatotic liver disease (MASLD) (previously called nonalcoholic fatty liver disease, NAFLD) is associated with cardiometabolic risk factors and chronic kidney disease (CKD). However, evidence is lacking regarding whether the severity of fibrosis is affected by these risk factors and diseases and to what degree. We aimed to determine the correlation between these factors and vibration-controlled transient elastography-determined liver stiffness measurements (LSMs) and controlled attenuation parameter (CAP) values in a sample of the US population.
View Article and Find Full Text PDFBackground: A reliable risk prediction model is critically important for identifying individuals with high risk of developing lung cancer as candidates for low-dose chest computed tomography (LDCT) screening. Leveraging a cutting-edge machine learning technique that accommodates a wide list of questionnaire-based predictors, we sought to optimize and validate a lung cancer prediction model.
Methods: We developed an Optimized early Warning model for Lung cancer risk (OWL) using the XGBoost algorithm with 323,344 participants from the England area in UK Biobank (training set), and independently validated it with 93,227 participants from UKB Scotland and Wales area (validation set 1), as well as 70,605 and 66,231 participants in the Prostate, Lung, Colorectal, and Ovarian cancer screening trial (PLCO) control and intervention subpopulations, respectively (validation sets 2 & 3) and 23,138 and 18,669 participants in the United States National Lung Screening Trial (NLST) control and intervention subpopulations, respectively (validation sets 4 & 5).
Introduction: Although genome-wide association studies have been conducted to investigate genetic variation of lung tumorigenesis, little is known about gene-gene (G × G) interactions that may influence the risk of non-small cell lung cancer (NSCLC).
Methods: Leveraging a total of 445,221 European-descent participants from the International Lung Cancer Consortium OncoArray project, Transdisciplinary Research in Cancer of the Lung and UK Biobank, we performed a large-scale genome-wide G × G interaction study on European NSCLC risk by a series of analyses. First, we used BiForce to evaluate and rank more than 58 billion G × G interactions from 340,958 single-nucleotide polymorphisms (SNPs).