Publications by authors named "Zou Junzhu"

Arbuscular mycorrhizal fungi (AMF) are positive to the phytoremediation by improving plant biomass and soil properties. However, the role of AM plants to the remediation of polycyclic aromatic hydrocarbons (PAHs) is yet to be widely recognized, and the impact of AM plants to indigenous microbial communities during remediation remains unclear. In this work, a 90-day study was conducted to assess the effect of AMF-Salix viminalis on the removal of PAHs, and explore the impact to the microbial community composition, abundance, and function.

View Article and Find Full Text PDF

Phosphorus (P) plays a crucial role in facilitating plant adaptation to cadmium (Cd) stress. However, the molecular mechanisms underlying P-mediated responses to Cd stress in roots remain elusive. This study investigates the effects of P on the growth, physiology, transcriptome, and metabolome of Salix caprea under Cd stress.

View Article and Find Full Text PDF

Regions affected by heavy metal contamination frequently encounter phosphorus (P) deficiency. Numerous studies highlight crucial role of P in facilitating cadmium (Cd) accumulation in woody plants. However, the regulatory mechanism by which P affects Cd accumulation in roots remains ambiguous.

View Article and Find Full Text PDF

The Salicaceae, including Populus and Salix, are dioecious perennials that utilize different sex determination systems. This family provides a useful system to better understand the evolution of dioecy and sex chromosomes. Here, a rare monoecious genotype of Salix purpurea, 94003, was self- and cross-pollinated and progeny sex ratios were used to test hypotheses on possible mechanisms of sex determination.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are well known persistent organic pollutants that have carcinogenic, teratogenic, and mutagenic effects on humans and animals. Arbuscular mycorrhizal fungi (AMF) that can infest plant hosts and form symbioses may help plants to enhance potential rhizosphere effects, thus contributing to the rhizodegradation of PAH-contaminated soils. The present study aimed to assess the effectiveness of AMF on enhancing Salix viminalis-mediated phytoremediation of PAH-polluted soil and clarify the plant enzymatic and organic acid mechanisms induced by AMF.

View Article and Find Full Text PDF

Premise: The evolution of sex chromosomes is driven by sexual dimorphism, yet it can be challenging to document sexually dimorphic traits in dioecious plant species. At the genetic level, sexual dimorphism can be identified through sequence variation between females and males associated with sexually antagonistic traits and different fitness optima. This study aims to examine sexual dimorphism for 26 traits in three populations of Salix purpurea (a diversity panel and F and F populations) and determine the effect of the traits on biomass yield, a key trait in Salix bioenergy crops across multiple years, locations, and under manipulated growth conditions.

View Article and Find Full Text PDF

, a dioecious shrub willow, has been widely used in phytoremediation, yet sexually differences in tolerance to cadmium of which remained unclear. This study focused on different responses to cadmium stress between roots of male and female . Results show that male plants of have stronger cadmium tolerance than female plants, which indicates male should be more considered to be applied for phytoremediation and ecological restoration of cadmium-accumulated soil considering cadmium tolerance characteristics.

View Article and Find Full Text PDF

Despite combined plant/white-rot fungus remediation being effective for remediating polycyclic aromatic hydrocarbon (PAH)-contaminated soil, the complex organismal interactions and their effects on soil PAH degradation remain unclear. Here, we used quantitative PCR, analysis of soil enzyme activities, and sequencing of representative genes to characterize the ecological dynamics of natural attenuation, mycoremediation (MR, using Crucibulum laeve), phytoremediation (PR, using Salix viminalis), and plant-microbial remediation (PMR, using both species) for PAHs in soil for 60 days. On day 60, PMR achieved the highest removal efficiency of all three representative PAHs (65.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent environmental pollutants. They exert toxic effects at different developmental stages of plants. Plant defense mechanisms against PAHs are poorly understood.

View Article and Find Full Text PDF

Methyl-CpG-binding domain (MBD) proteins have diverse molecular and biological functions in plants. Most studies of MBD proteins in plants have focused on the model plant L. Here we cloned from the willow L.

View Article and Find Full Text PDF