A key step in metabolic pathway evolution is the recruitment of promiscuous enzymes to perform new functions. Despite the recognition that promiscuity is widespread in biology, factors dictating the preferential recruitment of one promiscuous enzyme over other candidates are unknown. Escherichia coli contains four sugar kinases that are candidates for recruitment when the native glucokinase machinery is deleted-allokinase (AlsK), manno(fructo)kinase (Mak), N-acetylmannosamine kinase (NanK), and N-acetylglucosamine kinase (NagK).
View Article and Find Full Text PDFFragile X mental retardation protein (FMRP) is an RNA-binding protein abundant in the nervous system. Functional loss of FMRP leads to sensory dysfunction and severe intellectual disabilities. In the auditory system, FMRP deficiency alters neuronal function and synaptic connectivity and results in perturbed processing of sound information.
View Article and Find Full Text PDFAfferent activity dynamically regulates neuronal properties and connectivity in the central nervous system. The Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates cellular and synaptic properties in an activity-dependent manner. Whether and how FMRP level and localization are regulated by afferent input remains sparsely examined and how such regulation is associated with neuronal response to changes in sensory input is unknown.
View Article and Find Full Text PDFResearch over the past decade has identified several of the key limiting features of multidrug resistance (MDR) in cancer therapy applications, such as evolving glycoprotein receptors at the surface of the cell that limit therapeutic uptake, metabolic changes that lead to protection from multidrug resistant mediators which enhance degradation or efflux of therapeutics, and difficulty ensuring retention of intact and functional drugs once endocytosed. Nanoparticles have been demonstrated to be effective delivery vehicles for a plethora of therapeutic agents, and in the case of nucleic acid based agents, they provide protective advantages. Functionalizing cell penetrating peptides, also known as protein transduction domains, onto the surface of fluorescent quantum dots creates a labeled delivery package to investigate the nuances and difficulties of drug transport in MDR cancer cells for potential future clinical applications of diverse nanoparticle-based therapeutic delivery strategies.
View Article and Find Full Text PDFIn the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM), an auditory brainstem structure.
View Article and Find Full Text PDFA global loss of the fragile X mental retardation protein (FMRP; encoded by the Fmr1 gene) leads to sensory dysfunction and intellectual disabilities. One underlying mechanism of these phenotypes is structural and functional deficits in synapses. Here, we determined the autonomous function of postsynaptic FMRP in circuit formation, synaptogenesis, and synaptic maturation.
View Article and Find Full Text PDFThe Mongolian gerbil (Meriones unguiculatus) is a member of the rodent family that displays several features not found in mice or rats, including sensory specializations and social patterns more similar to those in humans. These features have made gerbils a valuable animal for research studies of auditory and visual processing, brain development, learning and memory, and neurological disorders. Here, we report the whole gerbil annotated genome sequence, and identify important similarities and differences to the human and mouse genomes.
View Article and Find Full Text PDFMultidrug resistance (MDR) represents a major hindrance to the efficacy of cancer chemotherapeutics. While surgical resection, radiation, and chemotherapy can be used to reduce tumor size, the subsequent appearance of drug resistant cells is a frequent problem. One of the main contributors to the development of MDR is increased expression of multi-drug resistant protein 1 (MDR1), also known as P-glycoprotein (P-gp).
View Article and Find Full Text PDFThe avian nucleus laminaris (NL) is a brainstem nucleus necessary for binaural processing, analogous in structure and function to the mammalian medial superior olive. In chickens (Gallus gallus), NL is a well-studied model system for activity-dependent neural plasticity. Its neurons have bipolar extension of dendrites, which receive segregated inputs from two ears and display rapid and compartment-specific reorganization in response to unilateral changes in auditory input.
View Article and Find Full Text PDFThe auditory ascending system contains parallel pathways in vertebrate brains. In chickens (Gallus gallus), three pathways arise from nucleus laminaris (NL), nucleus angularis (NA), and regio intermedius (RI) in the brainstem, innervating three subdivisions of the nucleus mesencephalicus lateralis pars dorsalis (MLd) in the midbrain. The current study reveals the segregation of these pathways in their subsequent projections to the nucleus ovoidalis (Ov) in the thalamus.
View Article and Find Full Text PDFDevelopment of adipose tissue requires the differentiation of less specialized cells, such as human mesenchymal stem cells (hMSCs), into adipocytes. Since matrix metalloproteinases (MMPs) play critical roles in the cell differentiation process, we conducted investigations to determine if a novel mercaptosulfonamide-based MMP inhibitor (MMPI), YHJ-7-52, could affect hMSC adipogenic differentiation and lipid accumulation. Enzyme inhibition assays, adipogenic differentiation experiments, and quantitative PCR methods were employed to characterize this inhibitor and determine its effect upon adipogenesis.
View Article and Find Full Text PDFThe glycolytic enzyme glucokinase (GCK) and the pro-apoptotic protein BAD reportedly reside within a five-membered complex that localizes to the mitochondria of mammalian hepatocytes and pancreatic β-cells. Photochemical crosslinking studies using a synthetic analog of BAD's BH3 domain and in vitro transcription/translation experiments support a direct interaction between BAD and GCK. To investigate the biochemical and biophysical consequences of the BAD:GCK interaction, we developed a method for the production of recombinant human BAD.
View Article and Find Full Text PDFThe fragile X mental retardation protein (FMRP) plays an important role in normal brain development. Absence of FMRP results in abnormal neuronal morphologies in a selected manner throughout the brain, leading to intellectual deficits and sensory dysfunction in the fragile X syndrome (FXS). Despite FMRP importance for proper brain function, its overall expression pattern in the mammalian brain at the resolution of individual neuronal cell groups is not known.
View Article and Find Full Text PDFWe report pH-switching properties of the new family of dipeptide-acetylene conjugates where pH-gated light-activated double-strand (ds) DNA cleavage is controlled by variations in electronic and geometric parameters. The conjugates have higher activities at the slightly acidic pH values that separate normal and cancerous tissue (pH < 7). This favorable pH dependence originates from several elements of structural design.
View Article and Find Full Text PDFBackground: Mutations in thin-filament proteins have been linked to hypertrophic cardiomyopathy, but it has never been demonstrated that variants identified in the TNNC1 (gene encoding troponin C) can evoke cardiac remodeling in vivo. The goal of this study was to determine whether TNNC1 can be categorized as an hypertrophic cardiomyopathy susceptibility gene, such that a mouse model can recapitulate the clinical presentation of the proband.
Methods And Results: The TNNC1-A8V proband diagnosed with severe obstructive hypertrophic cardiomyopathy at 34 years of age exhibited mild-to-moderate thickening in left and right ventricular walls, decreased left ventricular dimensions, left atrial enlargement, and hyperdynamic left ventricular systolic function.
Human mesenchymal stem cell (hMSC) resistance to the apoptotic effects of chemotherapeutic drugs has been of major interest, as these cells can confer this resistance to tumor microenvironments. However, the effects of internalized chemotherapeutics upon hMSCs remain largely unexplored. In this study, cellular viability and proliferation assays, combined with different biochemical approaches, were used to investigate the effects of Paclitaxel exposure upon hMSCs.
View Article and Find Full Text PDFHuman endometase/matrilysin-2/matrix metalloproteinase-26 (MMP-26) is an endopeptidase mostly produced by human carcinoma cells. While MMPs are thought to regulate the dynamics of extracellular matrix turnover, new evidence shows that these enzymes may play a critical regulatory role in inflammation. To investigate the role of MMP-26 in inflammation, three different variants of androgen repressed human prostate cancer (ARCaP) cells were investigated in the study: parental, MMP-26 sense cDNA-transfected, and MMP-26 antisense cDNA-transfected ARCaP cells.
View Article and Find Full Text PDFWe describe a family of hybrid compounds for the most efficient light-activated double-strand (ds) DNA cleavage known to date. This family represents the second generation of "switchable" molecular systems for pH-gated ds DNA-cleavage which combine a potent DNA-photocleaver and a pH-regulated part derived from a dipeptide. Design of the pH-switchable part utilizes amino groups of different basicity.
View Article and Find Full Text PDFHybrid molecules combining photoactivated aryl acetylenes and a dicationic lysine moiety cause the most efficient double-strand (ds) DNA cleavage known to date for a small molecule. In order to test the connection between the alkylating ability and the DNA-damaging properties of these compounds, we investigated the photoreactivity of three isomeric aryl-tetrafluoropyridinyl (TFP) alkynes with amide substituents in different positions (o-, m-, and p-) toward a model π-system. Reactions with 1,4-cyclohexadiene (1,4-CHD) were used to probe the alkylating properties of the triplet excited states in these three isomers whilst Stern-Volmer quenching experiments were used to investigate the kinetics of photoinduced electron transfer (PET).
View Article and Find Full Text PDFCancer Biol Ther
October 2009
Although most researchers in biology tend to focus on very specific issues and questions about their preferred gene or pathway, sometimes we face situations in which nature presents us with a remarkable example of a gene with multiple functions. Since the discovery of the early growth response 1 (EGR1) gene in the mid eighties, several independent groups attributed its activation as an immediate early response gene to extracellular stimuli such as environmental cues, growth factors, irradiation and small molecules. Even twenty-plus years after its initial cloning and characterization, EGR1 continues to attract considerable attention among biological circles.
View Article and Find Full Text PDFTaxanes (paclitaxel and docetaxel) are currently used to treat ovarian, breast, lung, and head and neck cancers. Despite its clinical success taxane-based treatment could be significantly improved by identifying those patients whose tumors are more likely to present a clinical response. In this mini-review we discuss the accumulating evidence indicating that the breast and ovarian cancer susceptibility gene product BRCA1 mediates cellular response to taxanes.
View Article and Find Full Text PDFCaenorhabditis elegans is unusual among animals in having a highly conserved octamer sequence at the 3' splice site: UUUU CAG/R. This sequence can bind to the essential heterodimeric splicing factor U2AF, with U2AF65 contacting the U tract and U2AF35 contacting the splice site itself (AG/R). Here we demonstrate a strong correspondence between binding to U2AF of RNA oligonucleotides with variant octamer sequences and the frequency with which such variations occur in splice sites.
View Article and Find Full Text PDFWe investigated the role of RNA polymerase II (pol II) carboxy-terminal domain (CTD) phosphorylation in pre-mRNA processing coupled and uncoupled from transcription in Xenopus oocytes. Inhibition of CTD phosphorylation by the kinase inhibitors 5,6-dichloro-1beta-D-ribofuranosyl-benzimidazole and H8 blocked transcription-coupled splicing and poly(A) site cleavage. These experiments suggest that pol II CTD phosphorylation is required for efficient pre-mRNA splicing and 3'-end formation in vivo.
View Article and Find Full Text PDFMany pre-mRNA processing events including 5' end capping, splicing out introns, and 3' end maturation by cleavage or polyadenylation occur while the nascent RNA chain is being synthesized by RNA polymerase II. As a consequence of this arrangement, the physiological substrate for most processing factors is not a solitary pre-RNA but instead a ternary complex comprising a growing RNA chain spewing from the exit channel of an RNA polymerase II molecule as it speeds along a chromatin template at 1000-2000 bases/min. mRNA processing factors make protein-protein contacts with elongating pol II in a complex we have dubbed the "mRNA factory," which carries out synthesis, processing, and packaging of the transcript.
View Article and Find Full Text PDFCapping enzymes bind the phosphorylated pol II CTD permitting cotranscriptional capping of nascent pre-mRNAs. We asked whether these interactions influence pol II function using ChIP in ts mutants of yeast capping enzymes. Pol II occupancy at the 5' ends of PGK1, ENO2, GAL1, and GAL10 was reduced by inactivation of the methyltransferase, Abd1, but not the guanylyltransferase, Ceg1, suggesting that Abd1 contributes to stable promoter binding.
View Article and Find Full Text PDF