To give new insight to alterations of cardiac lipid metabolism accompanied by a fructose-rich diet (FRD), rats of both sexes were exposed to 10 % fructose in drinking water during 9 weeks. The protein level and subcellular localization of the main regulators of cardiac lipid metabolism, such as lipin 1, peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), carnitine palmitoyltransferase I (CPTI), and CD36 were studied. Caloric intake in fructose-fed rats (FFR) of both sexes was increased.
View Article and Find Full Text PDFIt is supposed that women with polycystic ovary syndrome (PCOS) are prone to develop cardiovascular disease as a consequence of multiple risk factors that are mostly related to the state of insulin resistance and consequent hyperinsulinemia. In the present study, we evaluated insulin signaling and glucose transporters (GLUT) in cardiac cells of dihydrotestosterone (DHT) treated female rats as an animal model of PCOS. Expression of proteins involved in cardiac insulin signaling pathways and glucose transporters, as well as their phosphorylation or intracellular localization were studied by Western blot analysis in DHT-treated and control rats.
View Article and Find Full Text PDFFructose-rich diets (FRD) cause cardiac insulin resistance manifested by impairment of Akt/endothelial NO synthase (eNOS) signalling. In contrast, oestradiol (E2) activates this signalling pathway in the heart. To study the ability of E2 to revert the detrimental effect of fructose on cardiac Akt/eNOS, female rats were subjected to a FRD and ovariectomy followed with or without E2 replacement.
View Article and Find Full Text PDFFructose rich diet increases hepatic triglycerides production and has deleterious cardiac effects. Estrogens are involved in regulation of lipid metabolism as well, but their effects are cardio beneficial. In order to study effects of fructose rich diet on the main heart fatty acid transporter CD36 and the role of estrogens, we subjected ovariectomized female rats to the standard diet or fructose rich diet, with or without estradiol (E2) replacement.
View Article and Find Full Text PDFInsulin and estradiol share some of signaling pathways and regulate same target molecules exerting mostly beneficial cardiac effects. In order to study their cardiac interaction, ovariectomized female rats were treated with hormones, separately or simultaneously (20, 30 or 40min before analysis), and the phosphorylations of protein kinase B (Akt), extracellular signal-regulated kinases 1 and 2 (ERK 1/2), endothelial nitric oxide synthase (eNOS) were analyzed, as well as the plasma membrane content of α2 subunit of Na(+)/K(+)-ATPase. Insulin, particularly, and estradiol stimulate Ser(473) Akt phosphorylation.
View Article and Find Full Text PDFBackground: Fructose consumption produces deleterious metabolic effects in animal models. The sites of fructose-induced insulin resistance are documented to be the liver, skeletal muscle, and adipose tissue, but effects of fructose-rich diet on cardiac insulin signaling and action were not investigated.
Purpose And Methods: In order to study the potential fructose effects on development of cardiac insulin resistance, we analyzed biochemical parameters relevant for insulin action and phosphorylation of insulin signaling molecules, plasma membrane glucose transporter type 4 (GLUT4) content, and phosphorylation of endothelial nitric oxide synthase (eNOS), in ovariectomized female rats on fructose-enriched diet, in basal and insulin-stimulated conditions.
The purpose of this study was to examine the effects of ghrelin on protein kinase B (Akt) and mitogen-activated protein kinase p42/44 (ERK1/2) activation as well as ghrelin effects on inducible nitric oxide (NO) synthase (iNOS; for gene Nos2) activity/expression in rat hearts. Male Wistar rats were treated with ghrelin (0.3 nmol/5 μl) or an equal volume of phosphate-buffered saline, injected every 24 h into the lateral cerebral ventricle for 5 days and 2 h after the last treatment the animals were sacrificed.
View Article and Find Full Text PDFNumerous studies have shown that increased oxidative stress (OxS) is present in diabetic patients. There is evidence that this OxS can be increased before complications associated with diabetes mellitus (DM) occur. However, the role and influence of OxS in the initiation and progression of DM remains the subject of debate.
View Article and Find Full Text PDFIt is well known that variation in the concentration of estrogens affects insulin action. In this study we examine the impact of estradiol (E2) on insulin signaling in the rat heart. Ovariectomized female rats were treated with E2 6 h prior to analysis of basal protein and mRNA content of insulin signaling molecules, and additionally with insulin 30 min before the experiment to delineate E2 effects on phosphorylations and molecular associations relevant for insulin signaling.
View Article and Find Full Text PDFThe aim of this study was to examine the effects of dexamethasone (Dex) on functional properties of the rat insulin receptor (IR). Male Mill Hill hooded rats, 3, 6, 12, 18 and 21 months old, were injected with Dex (4 mg/kg) and rat liver and erythrocytes were used for experiments 18 h after Dex administration. Treatment with Dex lowered the specific binding (SB) of insulin (INS) in the liver of 3- and 18-month-old rats and concentration of INS binding sites (N1, N2) and the dissociation constant of low-affinity binding sites (Kd2) in the liver of 6- and 18-month-old rats.
View Article and Find Full Text PDFCausal relationship between sodium and hypertension has been proposed and various changes in Na+,K+-ATPase (sodium pump) activity have been described in established primary hypertension. A number of direct vascular effects of estradiol have been reported, including its impact on the regulation of sodium pump activity and vasomotor tone. The effects of estradiol involve the activation of multiple signaling cascades, including phosphatydil inositol-3 kinase (PI3K) and p42/44 mitogen-activated protein kinase (p42/44(MAPK)).
View Article and Find Full Text PDFInsulin-like growth factor-1 (IGF-1) is a hormone and growth factor closely related to insulin. The autocrine/paracrine actions of IGF-1 involve activation of inducible nitric oxide synthase (iNOS) and the Na(+), K(+)-ATPase sodium pump in cardiovascular tissues. Data from literature indicate that iNOS is expressed in vascular smooth muscle cells (VSMC) and that IGF-1-induced release of NO is both rapid and delayed.
View Article and Find Full Text PDFThis investigation used cytosol fraction of rat liver to examine the effects of insulin (INS) on functional properties of glucocorticoid receptor (GR). Male Wistar rats (220-250 g b.wt.
View Article and Find Full Text PDFGlucocorticoid hormones are involved in regulation of cell processes and coordinate physiological response to diverse signals. These hormones, through interaction with specific intracellular receptors, coordinate components of physiological repertoires by activating the expression of gene networks. Thus hormone-receptor complexes may function as key constituent in regulation of specific cell functions as well as in provoking differentiation in already determined cells.
View Article and Find Full Text PDFThe effects of aging on hepatic and erythrocyte insulin receptors have been investigated in 6, 12, 18 and 21-months-old compare to 3-months-old rats. Plasma insulin was elevated in 6, 12 and 18-months-old rats. Specific binding of insulin in liver was increased at the age of 8 months and accompanied with increase in concentration of low affinity binding sites, while specific binding to erythrocytes as well as concentration of both classes of binding sites was increased in 6-months-old rats.
View Article and Find Full Text PDF